feat: DDPM add noise & get time sequence

This commit is contained in:
snsd0805 2023-03-13 22:33:04 +08:00
parent ed018d3cd9
commit 816f6d1f56
Signed by: snsd0805
GPG Key ID: 569349933C77A854

59
ddpm.py Normal file
View File

@ -0,0 +1,59 @@
import torch
import torch.nn as nn
from unet import Unet
import matplotlib.pyplot as plt
class DDPM(nn.Module):
'''
Denoising Diffussion Probabilistic Model
Inputs:
Args:
batch_size (int): batch_size, for generate time_seq, etc.
iteration (int): max time_seq
beta_min, beta_max (float): for beta scheduling
time_emb_dim (int): for Unet's PositionEncode layer
device (nn.Device)
'''
def __init__(self, batch_size, iteration, beta_min, beta_max, time_emb_dim, device):
super(DDPM, self).__init__()
self.batch_size = batch_size
self.iteration = iteration
self.device = device
self.unet = Unet(time_emb_dim, device)
self.time_emb_dim = time_emb_dim
self.beta = torch.linspace(beta_min, beta_max, steps=iteration) # (iteration)
self.alpha = 1 - self.beta # (iteration)
self.overline_alpha = torch.cumprod(self.alpha, dim=0)
def get_time_seq(self):
'''
Get random time sequence for each picture in the batch
Inputs:
None
Outputs:
time_seq: rand int from 0 to ITERATION
'''
return torch.randint(0, self.iteration, (self.batch_size,) )
def get_x_t(self, x_0, time_seq):
'''
Input pictures then return noised pictures
Inputs:
x_0: pictures (b, c, w, h)
time_seq: times apply on each pictures (b, )
Outputs:
x_t: noised pictures (b, c, w, h)
'''
b, c, w, h = x_0.shape
mu = torch.sqrt(self.overline_alpha[time_seq])[:, None, None, None].repeat(1, c, w, h)
mu = mu * x_0
sigma = torch.sqrt(1-self.overline_alpha[time_seq])[:, None, None, None].repeat(1, c, w, h)
epsilon = torch.randn_like(x_0)
return mu + sigma * epsilon