DDPM_Mnist/sample.py

45 lines
1.4 KiB
Python

import torch
import matplotlib.pyplot as plt
from ddpm import DDPM
from unet import Unet
import sys
import os
import configparser
from classifier import Classfier
if __name__ == '__main__':
if len(sys.argv) < 2:
print("Usage: python sample.py [pic_num]")
exit()
elif len(sys.argv) == 3:
target = int( sys.argv[2] )
print("Target: {}".format(target))
# read config file
config = configparser.ConfigParser()
config.read('training.ini')
BATCH_SIZE = int(config['unet']['batch_size'])
ITERATION = int(config['ddpm']['iteration'])
TIME_EMB_DIM = int(config['unet']['time_emb_dim'])
DEVICE = torch.device(config['unet']['device'])
# start sampling
model = Unet(TIME_EMB_DIM, DEVICE).to(DEVICE)
ddpm = DDPM(int(sys.argv[1]), ITERATION, 1e-4, 2e-2, DEVICE)
classifier = Classfier(TIME_EMB_DIM, DEVICE).to(DEVICE)
model.load_state_dict(torch.load('unet.pth'))
classifier.load_state_dict(torch.load('classifier.pth'))
x_t = ddpm.sample(model, target=target, classifier=classifier, classifier_scale=0.5)
if not os.path.isdir('./output'):
os.mkdir('./output')
for index, pic in enumerate(x_t):
p = pic.to('cpu').permute(1, 2, 0)
plt.imshow(p, cmap='gray', vmin=0, vmax=255)
plt.savefig("output/{}.png".format(index))