DDPM_Mnist/ddpm.py

85 lines
3.4 KiB
Python

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
class DDPM(nn.Module):
'''
Denoising Diffussion Probabilistic Model
Inputs:
Args:
batch_size (int): batch_size, for generate time_seq, etc.
iteration (int): max time_seq
beta_min, beta_max (float): for beta scheduling
device (nn.Device)
'''
def __init__(self, batch_size, iteration, beta_min, beta_max, device):
super(DDPM, self).__init__()
self.batch_size = batch_size
self.iteration = iteration
self.device = device
self.beta = torch.linspace(beta_min, beta_max, steps=iteration).to(self.device) # (iteration)
self.alpha = (1 - self.beta).to(self.device) # (iteration)
self.overline_alpha = torch.cumprod(self.alpha, dim=0)
def get_time_seq(self, length):
'''
Get random time sequence for each picture in the batch
Inputs:
length (int): size of sequence
Outputs:
time_seq: rand int from 0 to ITERATION
'''
return torch.randint(0, self.iteration, (length,) ).to(self.device)
def get_x_t(self, x_0, time_seq):
'''
Input pictures then return noised pictures
Inputs:
x_0: pictures (b, c, w, h)
time_seq: times apply on each pictures (b, )
Outputs:
x_t: noised pictures (b, c, w, h)
'''
b, c, w, h = x_0.shape
mu = torch.sqrt(self.overline_alpha[time_seq])[:, None, None, None].repeat(1, c, w, h) # (b, c, w, h)
mu = mu * x_0 # (b, c, w, h)
sigma = torch.sqrt(1-self.overline_alpha[time_seq])[:, None, None, None].repeat(1, c, w, h) # (b, c, w, h)
epsilon = torch.randn_like(x_0).to(self.device) # (b, c, w, h)
return mu + sigma * epsilon, epsilon # (b, c, w, h)
def sample(self, model, n):
'''
Inputs:
model (nn.Module): Unet instance
n (int): want to sample n pictures
Outputs:
x_0 (nn.Tensor): (n, c, h, w)
'''
c, h, w = 1, 28, 28
model.eval()
with torch.no_grad():
x_t = torch.randn((n, c, h, w)).to(self.device) # (n, c, h, w)
for i in reversed(range(self.iteration)):
time_seq = (torch.ones(n) * i).long().to(self.device) # (n, )
predict_noise = model(x_t, time_seq) # (n, c, h, w)
first_term = 1/(torch.sqrt(self.alpha[time_seq])) # (n, )
second_term = (1-self.alpha[time_seq]) / (torch.sqrt(1-self.overline_alpha[time_seq]))
first_term = first_term[:, None, None, None].repeat(1, c, h, w)
second_term = second_term[:, None, None, None].repeat(1, c, h, w)
beta = self.beta[time_seq][:, None, None, None].repeat(1, c, h, w)
z = torch.randn((n, c, h, w))
x_t = first_term * (x_t-(second_term * predict_noise)) - z * beta
x_t = ( x_t.clamp(-1, 1) + 1 ) / 2
x = x * 255
return x_t