feat: trainer class for single/multi GPU

This commit is contained in:
TING-JUN WANG 2024-05-16 20:25:56 +08:00
parent 8f3253ff24
commit 24240f1c3a

View File

@ -1,4 +1,5 @@
import torch
import argparse
from torch import optim
from torch import nn
from dataset import Cifar10Dataset
@ -18,41 +19,66 @@ def ddp_init(rank, world_size):
init_process_group('nccl', rank=rank, world_size=world_size)
torch.cuda.set_device(rank)
class Trainer():
def __init__(self, rank, model, dataset, batch_size, optimizer, criterion):
self.rank = rank
def main(rank, world_size):
self.model = model.to(rank)
self.model = DDP(self.model, device_ids=[self.rank])
self.dataset = dataset
self.loader = DataLoader(self.dataset, batch_size, shuffle=False, sampler=DistributedSampler(self.dataset))
self.optimizer = optimizer
self.criterion = criterion
def train(self, epoch_num):
for epoch in range(epoch_num):
self.model.train()
train_loss_sum = 0
train_correct_sum = 0
train_item_counter = 0
for x, y in self.loader:
x = x.float()
x, y = x.to(self.rank), y.to(self.rank)
predict = self.model(x)
loss = self.criterion(predict, y)
loss.backward()
# evaluate
train_loss_sum += loss.item()
predicted_classes = torch.argmax(predict, dim=1)
train_correct_sum += (predicted_classes == y).sum()
train_item_counter += x.shape[0]
self.optimizer.step()
self.optimizer.zero_grad()
print(f"[DEVICE {self.rank}] EPOCH {epoch} loss={train_loss_sum/len(self.loader)} acc={(train_correct_sum/train_item_counter).item()}")
def main(rank, world_size, batch_size, epoch_num):
print(f'training with {world_size} GPUs')
print(f'training config: batch_size={batch_size}, epoch={epoch_num}')
ddp_init(rank, world_size)
model = Network().to(rank)
model = DDP(model, device_ids=[rank])
dataset = Cifar10Dataset('./dataset_dir/cifar-10-batches-py')
loader = DataLoader(dataset, batch_size=32, shuffle=False, sampler=DistributedSampler(dataset, ))
optimizer = optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
for epoch in range(50):
model.train()
train_loss_sum = 0
train_correct_sum = 0
for x, y in loader:
x = x.float()
x, y = x.to(rank), y.to(rank)
trainer = Trainer(rank, model, dataset, batch_size, optimizer, criterion)
trainer.train(epoch_num)
predict = model(x)
loss = criterion(predict, y)
loss.backward()
# evaluate
train_loss_sum += loss.item()
predicted_classes = torch.argmax(predict, dim=1)
train_correct_sum += (predicted_classes == y).sum()
optimizer.step()
optimizer.zero_grad()
print(f"[DEVICE {rank}] EPOCH {epoch} loss={train_loss_sum/len(loader)} acc={(train_correct_sum/len(dataset)).item()}")
if __name__ == '__main__':
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, ), nprocs=world_size)
parser = argparse.ArgumentParser()
parser.add_argument('--batch_size', type=int, default=32, help="batch size for training")
parser.add_argument('--epoch_num', type=int, default=50, help="training epoch")
args = parser.parse_args()
world_size = torch.cuda.device_count()
mp.spawn(main, args=(world_size, args.batch_size, args.epoch_num), nprocs=world_size)