''' Please Implement your model here. ''' from torch import nn import torch.nn.functional as F class Network(nn.Module): def __init__(self): super().__init__() self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding='same') self.conv2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding='same') self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding='same') self.conv4 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding='same') self.fc1 = nn.Linear(2048, 1024) self.fc2 = nn.Linear(1024, 128) self.fc3 = nn.Linear(128, 10) self.relu = nn.ReLU() self.dropout = nn.Dropout(0.3) def forward(self, x): x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.pool(x) x = self.dropout(x) x = self.relu(self.conv3(x)) x = self.relu(self.conv4(x)) x = self.pool(x) x = self.dropout(x) x = x.reshape((x.shape[0], -1)) x = self.relu(self.fc1(x)) x = self.dropout(x) x = self.relu(self.fc2(x)) x = self.dropout(x) x = self.fc3(x) return x