# Distributed-Training-Example ## Developing (not in the docker container) ### Start Downloading ``` mkdir ./dataset_dir cd ./dataset_dir wget https://www.cs.toronto.edu/\~kriz/cifar-10-python.tar.gz tar zxvf cifar-10-python.tar.gz ``` ### Start Training ``` python3 -m torch.distributed.run \ --nproc_per_node=1 \ --nnodes=1 \ --node_rank=0 \ --rdzv_id=21046 \ --rdzv_backend=c10d \ --rdzv_endpoint=127.0.0.1:21046 \ main.py ``` ## Testint (in the docker container) ### Start Downloading Image ``` mkdir ./dataset_dir docker run -it --rm -v ./dataset_dir:/dataset YOUR_IMAGE ``` ### Start Training Image ``` docker run -it \ --net=host \ --runtime=nvidia \ --gpus all \ -v ./dataset_dir:/dataset \ -v ./output:/output \ -e GPU_NUM=1 \ -e NODE_NUM=2 \ -e NODE_RANK=0 \ -e MASTER_IP=192.168.1.46 \ -e MASTER_PORT=21046 \ snsd0805/cifar100-train:v2 ```