40 lines
1.1 KiB
Python
40 lines
1.1 KiB
Python
import torch
|
|
from torch import optim
|
|
from torch import nn
|
|
from dataset import Cifar10Dataset
|
|
from model import Network
|
|
from torch.utils.data import DataLoader
|
|
import matplotlib.pyplot as plt
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
model = Network().to(device)
|
|
dataset = Cifar10Dataset('./dataset_dir/cifar-10-batches-py')
|
|
loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
|
criterion = nn.CrossEntropyLoss()
|
|
|
|
for epoch in range(50):
|
|
model.train()
|
|
train_loss_sum = 0
|
|
train_correct_sum = 0
|
|
for x, y in loader:
|
|
x = x.float()
|
|
x, y = x.to(device), y.to(device)
|
|
|
|
predict = model(x)
|
|
loss = criterion(predict, y)
|
|
loss.backward()
|
|
|
|
# evaluate
|
|
train_loss_sum += loss.item()
|
|
predicted_classes = torch.argmax(predict, dim=1)
|
|
train_correct_sum += (predicted_classes == y).sum()
|
|
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
print(train_loss_sum / len(loader))
|
|
print((train_correct_sum / len(dataset)).item(),'%')
|
|
print()
|