NTU-AI-HW5/custom_env.py
2024-05-21 18:21:25 +08:00

60 lines
2.0 KiB
Python

import gymnasium as gym
import cv2
import numpy as np
def preprocess(img, image_hw=84):
img = img[1:172, :] # MsPacman-specific cropping
img = cv2.resize(img, dsize=(image_hw, image_hw))
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) / 255.0
return img
class ImageEnv(gym.Wrapper):
def __init__(
self,
env,
skip_frames=4,
stack_frames=4,
image_hw=84,
initial_no_op=50,
**kwargs
):
super(ImageEnv, self).__init__(env, **kwargs)
self.initial_no_op = initial_no_op
self.skip_frames = skip_frames
self.stack_frames = stack_frames
self.image_hw = image_hw
def reset(self):
# Reset the original environment.
state, info = self.env.reset()
# Do nothing for the next `self.initial_no_op` steps
for i in range(self.initial_no_op):
state, reward, terminated, truncated, info = self.env.step(0)
# Convert the frame `state` to Grayscale and resize it
state = preprocess(state, image_hw=self.image_hw)
# The initial observation is simply a copy of the frame `state`
self.stacked_state = np.tile(state, (self.stack_frames, 1, 1)) # [4, 84, 84]
return self.stacked_state, info
def step(self, action):
# We take an action for self.skip_frames steps
rewards = 0
for _ in range(self.skip_frames):
state, reward, terminated, truncated, info = self.env.step(action)
rewards += reward
if terminated or truncated:
break
# Convert the frame `state` to Grayscale and resize it
state = preprocess(state, image_hw=self.image_hw)
# Push the current frame `state` at the end of self.stacked_state
self.stacked_state = np.concatenate((self.stacked_state[1:], state[np.newaxis]), axis=0)
return self.stacked_state, rewards, terminated, truncated, info