diff --git a/hw3/hw3_10.py b/hw3/hw3_10.py index 73b4091..dbb5f1e 100644 --- a/hw3/hw3_10.py +++ b/hw3/hw3_10.py @@ -22,7 +22,7 @@ def generate_data(N): return x, y def average_square_error(y, y_hat): - error = (y==y_hat) + error = (y!=y_hat) return error.sum()/error.shape[0] if __name__ == '__main__': @@ -42,10 +42,12 @@ if __name__ == '__main__': errors.append(error) print(times, error) - errors = sorted(errors) - median = ( errors[63] + errors[64] ) / 2 + sorted_errors = sorted(errors) + median = ( sorted_errors[63] + sorted_errors[64] ) / 2 plt.hist(errors, bins=10) plt.xlabel("Ein") plt.title("median: {}".format(median)) - plt.savefig("10.png") \ No newline at end of file + plt.savefig("10.png") + + diff --git a/hw3/hw3_11.py b/hw3/hw3_11.py index ef13f00..fc5c46a 100644 --- a/hw3/hw3_11.py +++ b/hw3/hw3_11.py @@ -77,13 +77,13 @@ if __name__ == '__main__': print() - linear_regression_errors = sorted(linear_regression_errors) - logistic_regression_errors = sorted(logistic_regression_errors) - linear_regression_median = linear_regression_errors[63] + linear_regression_errors[64] - logistic_regression_median = logistic_regression_errors[63] + logistic_regression_errors[64] + sorted_linear_regression_errors = sorted(linear_regression_errors) + sorted_logistic_regression_errors = sorted(logistic_regression_errors) + linear_regression_median = sorted_linear_regression_errors[63] + sorted_linear_regression_errors[64] + logistic_regression_median = sorted_logistic_regression_errors[63] + sorted_logistic_regression_errors[64] plt.scatter(linear_regression_errors, logistic_regression_errors) plt.xlabel("linear regression error") plt.xlabel("logistic regression error") plt.title("linear regression: {}\nlogistic regression: {}".format(linear_regression_median, logistic_regression_median)) - plt.savefig("11.png") \ No newline at end of file + plt.savefig("11.png") diff --git a/hw3/hw3_12.py b/hw3/hw3_12.py index 65fd4f9..74acc3a 100644 --- a/hw3/hw3_12.py +++ b/hw3/hw3_12.py @@ -90,14 +90,13 @@ if __name__ == '__main__': print(times, error) print() - - linear_regression_errors = sorted(linear_regression_errors) - logistic_regression_errors = sorted(logistic_regression_errors) - linear_regression_median = linear_regression_errors[63] + linear_regression_errors[64] - logistic_regression_median = logistic_regression_errors[63] + logistic_regression_errors[64] + sorted_linear_regression_errors = sorted(linear_regression_errors) + sorted_logistic_regression_errors = sorted(logistic_regression_errors) + linear_regression_median = sorted_linear_regression_errors[63] + sorted_linear_regression_errors[64] + logistic_regression_median = sorted_logistic_regression_errors[63] + sorted_logistic_regression_errors[64] plt.scatter(linear_regression_errors, logistic_regression_errors) plt.xlabel("linear regression error") plt.xlabel("logistic regression error") plt.title("linear regression: {}\nlogistic regression: {}".format(linear_regression_median, logistic_regression_median)) - plt.savefig("12.png") \ No newline at end of file + plt.savefig("12.png") diff --git a/hw3/hw3_9.py b/hw3/hw3_9.py index 3d0466b..bf25d19 100644 --- a/hw3/hw3_9.py +++ b/hw3/hw3_9.py @@ -2,7 +2,6 @@ import numpy as np import matplotlib.pyplot as plt import time - def generate_data(N): y = np.random.choice([1, -1], N) @@ -42,10 +41,10 @@ if __name__ == '__main__': errors.append(error) print(times, error) - errors = sorted(errors) - median = ( errors[63] + errors[64] ) / 2 + sorted_errors = sorted(errors) + median = ( sorted_errors[63] + sorted_errors[64] ) / 2 plt.hist(errors, bins=10) plt.xlabel("Ein") plt.title("median: {}".format(median)) - plt.savefig("9.png") \ No newline at end of file + plt.savefig("9.png")