feat: complete hw4
This commit is contained in:
parent
b3ddd2d11e
commit
ab0f64d364
63
hw4/hw4_10.py
Normal file
63
hw4/hw4_10.py
Normal file
@ -0,0 +1,63 @@
|
||||
import numpy as np
|
||||
from liblinear.liblinearutil import *
|
||||
import math
|
||||
|
||||
FILENAME = "hw4_train.dat"
|
||||
|
||||
def read_data(filename):
|
||||
with open(filename) as fp:
|
||||
lines = fp.readlines()
|
||||
x, y = [], []
|
||||
for line in lines:
|
||||
numbers = [ float(i) for i in line.split() ]
|
||||
x.append(numbers[:-1])
|
||||
y.append(int(numbers[-1]))
|
||||
return x, y
|
||||
|
||||
def format(features):
|
||||
'''
|
||||
change to LIBSVM format
|
||||
'''
|
||||
results = []
|
||||
for feature in features:
|
||||
result = {}
|
||||
for index, value in enumerate(feature):
|
||||
if value != 0.0:
|
||||
result[index+1] = value
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
def error(gt, pred):
|
||||
err = 0
|
||||
for index in range(len(gt)):
|
||||
err = (err+1) if gt[index]!=pred[index] else err
|
||||
return err/len(gt)
|
||||
|
||||
x, y = read_data(FILENAME)
|
||||
x = format(x)
|
||||
prob = problem(y, x)
|
||||
lambda_powers = [-6, -4, -2, 0, 2]
|
||||
|
||||
results = []
|
||||
for lambda_power in lambda_powers:
|
||||
lambda_value = 10 ** lambda_power
|
||||
param_C = 1/(2*lambda_value)
|
||||
param = parameter('-s 0 -c {} -e 0.000001 -q'.format(param_C))
|
||||
model = train(prob, param)
|
||||
p_label, p_acc, p_val = predict(y, x, model)
|
||||
err = error(y, p_label)
|
||||
print("0/1 error: ", err)
|
||||
print()
|
||||
results.append({'lambda': lambda_power, 'error': err})
|
||||
|
||||
ans, min_err = None, 1
|
||||
for i in results:
|
||||
if i['error'] <= min_err:
|
||||
min_err = i['error']
|
||||
ans = i
|
||||
|
||||
print("the largest lambda: {}, log_10(lambda*): {}".format(10**ans['lambda'], ans['lambda']))
|
||||
|
||||
|
||||
|
||||
|
||||
83
hw4/hw4_11.py
Normal file
83
hw4/hw4_11.py
Normal file
@ -0,0 +1,83 @@
|
||||
import numpy as np
|
||||
import datetime
|
||||
import random
|
||||
from liblinear.liblinearutil import *
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
FILENAME = "hw4_train.dat"
|
||||
|
||||
def read_data(filename):
|
||||
with open(filename) as fp:
|
||||
lines = fp.readlines()
|
||||
x, y = [], []
|
||||
for line in lines:
|
||||
numbers = [ float(i) for i in line.split() ]
|
||||
x.append(numbers[:-1])
|
||||
y.append(int(numbers[-1]))
|
||||
return x, y
|
||||
|
||||
def format(features):
|
||||
'''
|
||||
change to LIBSVM format
|
||||
'''
|
||||
results = []
|
||||
for feature in features:
|
||||
result = {}
|
||||
for index, value in enumerate(feature):
|
||||
if value != 0.0:
|
||||
result[index+1] = value
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
def error(gt, pred):
|
||||
err = 0
|
||||
for index in range(len(gt)):
|
||||
err = (err+1) if gt[index]!=pred[index] else err
|
||||
return err/len(gt)
|
||||
|
||||
def new_split(x, y):
|
||||
random.seed(datetime.datetime.now().timestamp())
|
||||
data = list(zip(x, y))
|
||||
random.shuffle(data)
|
||||
x, y = zip(*data)
|
||||
train_x, val_x = x[:120], x[120:]
|
||||
train_y, val_y = y[:120], y[120:]
|
||||
return (train_x, train_y), (val_x, val_y)
|
||||
|
||||
x, y = read_data(FILENAME)
|
||||
x = format(x)
|
||||
log_lambda = []
|
||||
for _ in range(128):
|
||||
(train_x, train_y), (val_x, val_y) = new_split(x, y)
|
||||
prob = problem(train_y, train_x)
|
||||
|
||||
lambda_powers = [-6, -4, -2, 0, 2]
|
||||
results = []
|
||||
for lambda_power in lambda_powers:
|
||||
lambda_value = 10 ** lambda_power
|
||||
param_C = 1/(2*lambda_value)
|
||||
param = parameter('-s 0 -c {} -e 0.000001 -q'.format(param_C))
|
||||
model = train(prob, param)
|
||||
p_label, p_acc, p_val = predict(val_y, val_x, model)
|
||||
err = error(val_y, p_label)
|
||||
print("0/1 error: ", err)
|
||||
print()
|
||||
results.append({'lambda': lambda_power, 'error': err})
|
||||
|
||||
ans, min_err = None, 1
|
||||
for i in results:
|
||||
if i['error'] <= min_err:
|
||||
min_err = i['error']
|
||||
ans = i
|
||||
|
||||
print("the largest lambda: {}, log_10(lambda*): {}".format(10**ans['lambda'], ans['lambda']))
|
||||
print()
|
||||
log_lambda.append(ans['lambda'])
|
||||
|
||||
|
||||
plt.hist(log_lambda)
|
||||
plt.savefig("hw4_11.png")
|
||||
|
||||
|
||||
|
||||
|
||||
105
hw4/hw4_12.py
Normal file
105
hw4/hw4_12.py
Normal file
@ -0,0 +1,105 @@
|
||||
import numpy as np
|
||||
import datetime
|
||||
import random
|
||||
from liblinear.liblinearutil import *
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
FILENAME = "hw4_train.dat"
|
||||
|
||||
def read_data(filename):
|
||||
with open(filename) as fp:
|
||||
lines = fp.readlines()
|
||||
x, y = [], []
|
||||
for line in lines:
|
||||
numbers = [ float(i) for i in line.split() ]
|
||||
x.append(numbers[:-1])
|
||||
y.append(int(numbers[-1]))
|
||||
return x, y
|
||||
|
||||
def format(features):
|
||||
'''
|
||||
change to LIBSVM format
|
||||
'''
|
||||
results = []
|
||||
for feature in features:
|
||||
result = {}
|
||||
for index, value in enumerate(feature):
|
||||
if value != 0.0:
|
||||
result[index+1] = value
|
||||
results.append(result)
|
||||
return results
|
||||
|
||||
def error(gt, pred):
|
||||
err = 0
|
||||
for index in range(len(gt)):
|
||||
err = (err+1) if gt[index]!=pred[index] else err
|
||||
return err/len(gt)
|
||||
|
||||
def new_split(x, y):
|
||||
random.seed(datetime.datetime.now().timestamp())
|
||||
data = list(zip(x, y))
|
||||
random.shuffle(data)
|
||||
x, y = zip(*data)
|
||||
|
||||
folds = []
|
||||
head, tail = 0, 40
|
||||
while head < len(x):
|
||||
folds.append(
|
||||
(x[head:tail], y[head:tail])
|
||||
)
|
||||
head += 40
|
||||
tail += 40
|
||||
|
||||
return folds
|
||||
|
||||
x, y = read_data(FILENAME)
|
||||
x = format(x)
|
||||
log_lambda = []
|
||||
lambda_powers = [-6, -4, -2, 0, 2]
|
||||
for _ in range(128):
|
||||
folds = new_split(x, y)
|
||||
errors = [ 0 for _ in range(len(lambda_powers)) ]
|
||||
results = []
|
||||
for val_index in range(len(folds)):
|
||||
train_x, train_y = [], []
|
||||
val_x, val_y = [], []
|
||||
|
||||
for i in range(len(folds)):
|
||||
if i == val_index:
|
||||
val_x = folds[i][0]
|
||||
val_y = folds[i][1]
|
||||
else:
|
||||
train_x += folds[i][0]
|
||||
train_y += folds[i][1]
|
||||
|
||||
prob = problem(train_y, train_x)
|
||||
|
||||
for index, lambda_power in enumerate(lambda_powers):
|
||||
lambda_value = 10 ** lambda_power
|
||||
param_C = 1/(2*lambda_value)
|
||||
param = parameter('-s 0 -c {} -e 0.000001 -q'.format(param_C))
|
||||
model = train(prob, param)
|
||||
p_label, p_acc, p_val = predict(val_y, val_x, model)
|
||||
err = error(val_y, p_label)
|
||||
errors[index] += err
|
||||
|
||||
for index, lambda_power in enumerate(lambda_powers):
|
||||
results.append({'lambda': lambda_power, 'error': errors[index]/len(folds)})
|
||||
|
||||
ans, min_err = None, 1
|
||||
for i in results:
|
||||
if i['error'] <= min_err:
|
||||
min_err = i['error']
|
||||
ans = i
|
||||
|
||||
print("the largest lambda: {}, log_10(lambda*): {}".format(10**ans['lambda'], ans['lambda']))
|
||||
print()
|
||||
log_lambda.append(ans['lambda'])
|
||||
|
||||
|
||||
plt.hist(log_lambda)
|
||||
plt.savefig("hw4_12.png")
|
||||
|
||||
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user