49 lines
1.1 KiB
Python
49 lines
1.1 KiB
Python
import numpy as np
|
|
import datetime
|
|
import random
|
|
from libsvm.svmutil import *
|
|
import matplotlib.pyplot as plt
|
|
|
|
FILENAME = "satimage.scale"
|
|
TEST_FILENAME = "satimage.scale.t"
|
|
TARGET = 1
|
|
|
|
def new_label(y, target):
|
|
ans = []
|
|
for i in y:
|
|
if i == target:
|
|
ans.append(1)
|
|
else:
|
|
ans.append(0)
|
|
return ans
|
|
|
|
def error(predict, gt):
|
|
error_count = 0
|
|
for index in range(len(predict)):
|
|
if predict[index] != gt[index]:
|
|
error_count += 1
|
|
return error_count / len(predict)
|
|
|
|
if __name__ == '__main__':
|
|
|
|
y, x = svm_read_problem(FILENAME)
|
|
y = new_label(y, TARGET)
|
|
|
|
test_y, test_x = svm_read_problem(TEST_FILENAME)
|
|
test_y = new_label(test_y, TARGET)
|
|
|
|
for c in [0.01, 0.1, 1, 10, 100]:
|
|
print("C=", c)
|
|
prob = svm_problem(y, x)
|
|
param = svm_parameter('-s 0 -t 2 -g 1 -c {} -q'.format(c))
|
|
m = svm_train(prob, param)
|
|
|
|
p_label, p_acc, p_val = svm_predict(test_y, test_x, m)
|
|
my_error = error(p_label, test_y)
|
|
print("p_acc:", p_acc)
|
|
print("0/1 error:", my_error)
|
|
|
|
|
|
print("="*20)
|
|
|