feat: Add bboxes confidences

This commit is contained in:
Ting-Jun Wang 2024-12-15 16:44:33 +08:00
parent 1547974692
commit bc6cb9a9f8
Signed by: snsd0805
GPG Key ID: 48D331A3D6160354
4 changed files with 146 additions and 30 deletions

View File

@ -62,7 +62,14 @@ def valid(args, val_envs):
open(os.path.join(args.log_dir, "detail_%s.json" % (env_name)), 'w'), open(os.path.join(args.log_dir, "detail_%s.json" % (env_name)), 'w'),
sort_keys=True, indent=4, separators=(',', ': ') sort_keys=True, indent=4, separators=(',', ': ')
) )
print(os.path.join(args.pred_dir, "%s_%s.json" % (prefix, env_name)))
json.dump(
preds,
open(os.path.join(args.pred_dir, "%s_%s.json" % (prefix, env_name)), 'w'),
sort_keys=True, indent=4, separators=(',', ': ')
)
'''
if 'test' not in env_name: if 'test' not in env_name:
score_summary, _ = env.eval_metrics(preds) score_summary, _ = env.eval_metrics(preds)
loss_str = "Env name: %s" % env_name loss_str = "Env name: %s" % env_name
@ -70,11 +77,7 @@ def valid(args, val_envs):
loss_str += ', %s: %.2f' % (metric, val) loss_str += ', %s: %.2f' % (metric, val)
write_to_record_file(loss_str+'\n', record_file) write_to_record_file(loss_str+'\n', record_file)
json.dump( '''
preds,
open(os.path.join(args.pred_dir, "%s_%s.json" % (prefix, env_name)), 'w'),
sort_keys=True, indent=4, separators=(',', ': ')
)
def valid_from_file(args, val_envs): def valid_from_file(args, val_envs):

View File

@ -47,14 +47,18 @@ FINAL_ANSWER_ACTION = "Final Answer:"
EXCEPTION_TOOL_NAME = "_Exception" EXCEPTION_TOOL_NAME = "_Exception"
MAX_SCRATCHPAD_LENGTH = 7000 MAX_SCRATCHPAD_LENGTH = 7000
CLIP_TARGET = ""
FINAL_STOP_POINT = "" FINAL_STOP_POINT = ""
FINAL_STATE = "" FINAL_STATE = ""
SUCCESS = 0 SUCCESS = 0
TEMP_STEPS_COUNTER = 0 TEMP_STEPS_COUNTER = 0
STEPS_COUNTER = 0 STEPS_COUNTER = 0
NOW_LOCATION = None NOW_LOCATION = None
FOUND_BBOX = ""
LAST_VP = ""
THRESHOLD = 0.2812 THRESHOLD = 0.278
SCAN = ""
MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = ( MISSING_ACTION_AFTER_THOUGHT_ERROR_MESSAGE = (
"Invalid Format: Missing 'Action:' after 'Thought:" "Invalid Format: Missing 'Action:' after 'Thought:"
@ -69,6 +73,15 @@ FINAL_ANSWER_AND_PARSABLE_ACTION_ERROR_MESSAGE = (
print("Load CLIP confidence file...") print("Load CLIP confidence file...")
confidences = load_json('../datasets/REVERIE/annotations/confidence.json') confidences = load_json('../datasets/REVERIE/annotations/confidence.json')
print("Loaded") print("Loaded")
print()
print("Load distance file...")
distances = {}
for SCAN in ['2azQ1b91cZZ', 'X7HyMhZNoso', 'Z6MFQCViBuw', 'TbHJrupSAjP', 'EU6Fwq7SyZv', 'zsNo4HB9uLZ', 'x8F5xyUWy9e', '8194nk5LbLH', 'oLBMNvg9in8', 'QUCTc6BB5sX']:
scan_distance = load_json('/data/base_dir/v1/scans/{}/output.json'.format(SCAN))
distances[SCAN] = scan_distance
print("Loaded")
print()
def is_found(scan, vp, clip_target): def is_found(scan, vp, clip_target):
found = False found = False
@ -91,6 +104,10 @@ class NavGPTOutputParser(AgentOutputParser):
global SUCCESS global SUCCESS
global NOW_LOCATION global NOW_LOCATION
global FINAL_STATE global FINAL_STATE
global CLIP_TARGET
global SCAN
global LAST_VP
global FOUND_BBOX
includes_answer = FINAL_ANSWER_ACTION in text includes_answer = FINAL_ANSWER_ACTION in text
regex = ( regex = (
r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*\"?([a-fA-F0-9]{32})\"?" r"Action\s*\d*\s*:[\s]*(.*?)[\s]*Action\s*\d*\s*Input\s*\d*\s*:[\s]*\"?([a-fA-F0-9]{32})\"?"
@ -104,6 +121,28 @@ class NavGPTOutputParser(AgentOutputParser):
action = action_match.group(1).strip() action = action_match.group(1).strip()
action_input = action_match.group(2) action_input = action_match.group(2)
tool_input = action_input.strip(" ") tool_input = action_input.strip(" ")
# confidence to stop
if tool_input in confidences[SCAN]:
found = False
max_bbox, max_bbox_confidence = "", 0
for bbox in confidences[SCAN][tool_input]:
confidence = confidences[SCAN][tool_input][bbox][CLIP_TARGET]
if confidence >= THRESHOLD and confidence >= max_bbox_confidence:
max_bbox = bbox
max_bbox_confidence = confidence
FOUND_BBOX = bbox
found = True
if found:
FINAL_STATE = 'stop'
LAST_VP = tool_input
print("=============== FOUND OBJECT IN CLIP ===================")
return AgentFinish(
{"output": tool_input}, text
)
# ensure if its a well formed SQL query we don't remove any trailing " chars # ensure if its a well formed SQL query we don't remove any trailing " chars
if tool_input.startswith("SELECT ") is False: if tool_input.startswith("SELECT ") is False:
tool_input = tool_input.strip('"') tool_input = tool_input.strip('"')
@ -113,14 +152,18 @@ class NavGPTOutputParser(AgentOutputParser):
print(f"MY FINAL_STOP_POINT = {FINAL_STOP_POINT}") print(f"MY FINAL_STOP_POINT = {FINAL_STOP_POINT}")
# TEMP_STEPS_COUNTER += 1 # TEMP_STEPS_COUNTER += 1
'''
print(f"TEMP_STEPS_COUNT = {TEMP_STEPS_COUNTER}") print(f"TEMP_STEPS_COUNT = {TEMP_STEPS_COUNTER}")
print(f"STEPS_COUNT = {STEPS_COUNTER}") print(f"STEPS_COUNT = {STEPS_COUNTER}")
print(f"SUCCESS = {SUCCESS}") print(f"SUCCESS = {SUCCESS}")
'''
NOW_LOCATION = tool_input NOW_LOCATION = tool_input
TEMP_STEPS_COUNTER += 1 TEMP_STEPS_COUNTER += 1
print(f"NOW_LOCATION = {NOW_LOCATION}") print(f"NOW_LOCATION = {NOW_LOCATION}")
print(f'ACTION={action}, TOOL_INPUT={tool_input}, TEXT={text}')
''' '''
if FINAL_STOP_POINT in text: if FINAL_STOP_POINT in text:
@ -138,15 +181,17 @@ class NavGPTOutputParser(AgentOutputParser):
return AgentAction(action, tool_input, text) return AgentAction(action, tool_input, text)
elif includes_answer: elif includes_answer:
is_STOP = 'Finished' in text # is_STOP = 'Finished' in text
print("FINAL: ", is_STOP) # print("FINAL: ", is_STOP)
'''
if is_STOP: if is_STOP:
FINAL_STATE = 'stop' FINAL_STATE = 'stop'
else: else:
FINAL_STATE = 'not found' FINAL_STATE = 'not found'
'''
'''
if NOW_LOCATION == FINAL_STOP_POINT: if NOW_LOCATION == FINAL_STOP_POINT:
STEPS_COUNTER += TEMP_STEPS_COUNTER STEPS_COUNTER += TEMP_STEPS_COUNTER
TEMP_STEPS_COUNTER = 0 TEMP_STEPS_COUNTER = 0
@ -159,6 +204,8 @@ class NavGPTOutputParser(AgentOutputParser):
print(f"{FINAL_STOP_POINT}_{type(FINAL_STOP_POINT)}") print(f"{FINAL_STOP_POINT}_{type(FINAL_STOP_POINT)}")
print(f"SUCCESS = {SUCCESS}") print(f"SUCCESS = {SUCCESS}")
print(f"STEPS_COUNTER = {STEPS_COUNTER}") print(f"STEPS_COUNTER = {STEPS_COUNTER}")
'''
FINAL_STATE = 'not found'
return AgentFinish( return AgentFinish(
{"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text {"output": text.split(FINAL_ANSWER_ACTION)[-1].strip()}, text
) )
@ -749,6 +796,10 @@ class NavGPTAgent(BaseAgent):
global STEPS_COUNTER global STEPS_COUNTER
global FINAL_STATE global FINAL_STATE
global NOW_LOCATION global NOW_LOCATION
global SCAN
global CLIP_TARGET
global LAST_VP
global FOUND_BBOX
FINAL_STOP_POINT = obs[0]['gt_path'][-1] FINAL_STOP_POINT = obs[0]['gt_path'][-1]
FINAL_STATE = "" FINAL_STATE = ""
@ -765,18 +816,22 @@ class NavGPTAgent(BaseAgent):
print(obs[0]['obs_summary']) print(obs[0]['obs_summary'])
print(obs[0]['objects']) print(obs[0]['objects'])
print(obs[0]['scan']) print(obs[0]['scan'])
print(obs[0]['viewpoint']) print('now:', obs[0]['viewpoint'])
print(obs[0]['heading']) print(obs[0]['heading'])
print(obs[0]['elevation']) print(obs[0]['elevation'])
print(obs[0]['candidate']) print(obs[0]['candidate'])
print(obs[0]['instruction']) print(obs[0]['instruction'])
print(obs[0]['gt_path']) print('path:', obs[0]['gt_path'])
print(obs[0]['path_id']) print(obs[0]['path_id'])
print(obs[0]['start']) print('start:', obs[0]['start'])
print(obs[0]['target']) print(obs[0]['target'])
print(obs[0]['new_reverie_id']) print(obs[0]['new_reverie_id'])
print(obs[0]['clip_target']) print(obs[0]['clip_target'])
NOW_LOCATION = obs[0]['start'] NOW_LOCATION = obs[0]['start']
CLIP_TARGET = obs[0]['clip_target']
SCAN = obs[0]['scan']
LAST_VP = ""
FOUND_BBOX = ""
@ -856,6 +911,9 @@ class NavGPTAgent(BaseAgent):
'init_observation': init_observation, # 8 direction's observation caption & navigable point & objects 'init_observation': init_observation, # 8 direction's observation caption & navigable point & objects
} }
output = self.agent_executor(input) output = self.agent_executor(input)
if LAST_VP != "":
turned_angle, new_obs = self.make_equiv_action([LAST_VP])
if 'stop' in FINAL_STATE: if 'stop' in FINAL_STATE:
self.traj[i]['final_state'] = 'stop' self.traj[i]['final_state'] = 'stop'
@ -864,6 +922,8 @@ class NavGPTAgent(BaseAgent):
self.traj[i]['llm_output'] = output['output'] self.traj[i]['llm_output'] = output['output']
self.traj[i]['action_plan'] = output['action_plan'] self.traj[i]['action_plan'] = output['action_plan']
self.traj[i]['bbox'] = FOUND_BBOX
# extract agent's thought from llm output # extract agent's thought from llm output
intermediate_steps = output['intermediate_steps'] intermediate_steps = output['intermediate_steps']
self.traj[i]['llm_thought'] = [] self.traj[i]['llm_thought'] = []
@ -873,4 +933,7 @@ class NavGPTAgent(BaseAgent):
self.traj[i]['llm_thought'].append(thought) self.traj[i]['llm_thought'].append(thought)
self.traj[i]['llm_observation'].append(observation) self.traj[i]['llm_observation'].append(observation)
print("TRAJ: {}".format(self.traj[0]['path']))
print(f"status={FINAL_STATE}, FOUND_BBOX={FOUND_BBOX}")
print()
return self.traj return self.traj

View File

@ -14,6 +14,17 @@ from utils.graph_utils import NavGraph
ERROR_MARGIN = 3.0 ERROR_MARGIN = 3.0
obj2vps = {}
bbox_data = json.load(open('/data/Matterport3DSimulator-duet/VLN-DUET/datasets/REVERIE/annotations/BBoxes.json'))
for scanvp, value in bbox_data.items():
scan, vp = scanvp.split('_')
# for all visible objects at that viewpoint
for objid, objinfo in value.items():
if objinfo['visible_pos']:
# if such object not already in the dict
obj2vps.setdefault(scan+'_'+objid, [])
obj2vps[scan+'_'+objid].append(vp)
def load_floorplan(): def load_floorplan():
region_label_lookup = load_region_label_lookup() region_label_lookup = load_region_label_lookup()
@ -118,6 +129,8 @@ def load_region_label_lookup():
} }
return region_label_lookup return region_label_lookup
with open('./node_region.json') as fp:
node_region = json.load(fp)
class Simulator(object): class Simulator(object):
''' A simple simulator in Matterport3D environment ''' ''' A simple simulator in Matterport3D environment '''
@ -157,8 +170,9 @@ class Simulator(object):
# Load navigable dict # Load navigable dict
navigable_path = os.path.join(self.navigable_dir, self.scan_ID + '_navigable.json') navigable_path = os.path.join(self.navigable_dir, self.scan_ID + '_navigable.json')
with open(navigable_path, 'r') as f: with open(navigable_path, 'r') as f:
navigable_dict = json.load(f) self.navigable_dict = json.load(f)
'''
self.navigable_dict = {} self.navigable_dict = {}
for start, v in navigable_dict.items(): for start, v in navigable_dict.items():
self.navigable_dict[start] = {} self.navigable_dict[start] = {}
@ -170,6 +184,7 @@ class Simulator(object):
self.navigable_dict[start][to] = _v self.navigable_dict[start][to] = _v
# print(start_region, to_region) # print(start_region, to_region)
# print("AFTER: ", len(self.navigable_dict[start])) # print("AFTER: ", len(self.navigable_dict[start]))
'''
# Get candidate # Get candidate
self.getCandidate() self.getCandidate()
@ -406,7 +421,7 @@ class REVERIENavBatch(object):
near_d = d near_d = d
return near_id return near_id
def _eval_item(self, scan, pred_path, gt_path): def _eval_item(self, scan, pred_path, gt_path, gt_found, found, gt_objid):
scores = {} scores = {}
shortest_distances = self.shortest_distances[scan] shortest_distances = self.shortest_distances[scan]
@ -425,9 +440,27 @@ class REVERIENavBatch(object):
gt_lengths = np.sum([shortest_distances[a][b] for a, b in zip(gt_path[:-1], gt_path[1:])]) gt_lengths = np.sum([shortest_distances[a][b] for a, b in zip(gt_path[:-1], gt_path[1:])])
scores['success'] = float(scores['nav_error'] < ERROR_MARGIN) scores['found_success'] = float(gt_found == found)
# scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
scores['oracle_success'] = float(scores['oracle_error'] < ERROR_MARGIN) goal_viewpoints = set(obj2vps['%s_%s'%(scan, str(gt_objid))])
pred_stop_region = node_region[scan][path[-1]]
gt_stop_region = node_region[scan][gt_path[-1]]
# scores['success'] = float(scores['nav_error'] < ERROR_MARGIN)
scores['success'] = float(path[-1] in goal_viewpoints)
scores['room_success'] = float(gt_stop_region == pred_stop_region)
# scores['oracle_success'] = float(scores['oracle_error'] < ERROR_MARGIN)
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
scores['sspl_1'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['sspl_2'] = scores['room_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['sspl_3'] = scores['oracle_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['ss_1'] = scores['success'] * scores['found_success']
scores['ss_2'] = scores['room_success'] * scores['found_success']
scores['ss_3'] = scores['oracle_success'] * scores['found_success']
scores.update( scores.update(
cal_dtw(shortest_distances, path, gt_path, scores['success'], ERROR_MARGIN) cal_dtw(shortest_distances, path, gt_path, scores['success'], ERROR_MARGIN)
@ -445,8 +478,9 @@ class REVERIENavBatch(object):
for item in preds: for item in preds:
instr_id = item['instr_id'] instr_id = item['instr_id']
traj = item['trajectory'] traj = item['trajectory']
obj_id = instr_id.split('_')[1]
scan, gt_traj = self.gt_trajs[instr_id] scan, gt_traj = self.gt_trajs[instr_id]
traj_scores = self._eval_item(scan, traj, gt_traj) traj_scores = self._eval_item(scan, traj, gt_traj, item['gt_found'], item['found'], obj_id)
for k, v in traj_scores.items(): for k, v in traj_scores.items():
metrics[k].append(v) metrics[k].append(v)
metrics['instr_id'].append(instr_id) metrics['instr_id'].append(instr_id)
@ -458,8 +492,16 @@ class REVERIENavBatch(object):
'nav_error': np.mean(metrics['nav_error']), 'nav_error': np.mean(metrics['nav_error']),
'oracle_error': np.mean(metrics['oracle_error']), 'oracle_error': np.mean(metrics['oracle_error']),
'sr': np.mean(metrics['success']) * 100, 'sr': np.mean(metrics['success']) * 100,
'room_success': np.mean(metrics['room_success']) * 100,
'found_success': np.mean(metrics['found_success']) * 100,
'oracle_sr': np.mean(metrics['oracle_success']) * 100, 'oracle_sr': np.mean(metrics['oracle_success']) * 100,
# 'spl': np.mean(metrics['spl']) * 100, 'spl': np.mean(metrics['spl']) * 100,
'sspl_1': np.mean(metrics['sspl_1']) * 100,
'sspl_2': np.mean(metrics['sspl_2']) * 100,
'sspl_3': np.mean(metrics['sspl_3']) * 100,
'ss_1': np.mean(metrics['ss_1']) * 100,
'ss_2': np.mean(metrics['ss_2']) * 100,
'ss_3': np.mean(metrics['ss_3']) * 100,
'nDTW': np.mean(metrics['nDTW']) * 100, 'nDTW': np.mean(metrics['nDTW']) * 100,
'SDTW': np.mean(metrics['SDTW']) * 100, 'SDTW': np.mean(metrics['SDTW']) * 100,
'CLS': np.mean(metrics['CLS']) * 100, 'CLS': np.mean(metrics['CLS']) * 100,

View File

@ -244,16 +244,24 @@ Instruction: {action_plan}
Initial Observation: {init_observation} Initial Observation: {init_observation}
Thought: I should start navigation according to the instruction, {agent_scratchpad}""" Thought: I should start navigation according to the instruction, {agent_scratchpad}"""
VLN_GPT35_PROMPT = """As an intelligent embodied agent, you will navigate an indoor environment to reach a target viewpoint based on a given instruction, performing the Vision and Language Navigation (VLN) task. The instruction may be either feasible or infeasible (i.e., the specified object might not be found in the environment). You will move among static positions within a pre-defined graph, aiming for the nearest position to the object if the object is present. VLN_GPT35_PROMPT = """As an intelligent embodied agent, you will navigate in an indoor environment to reach a target viewpoint based on a given instruction, performing the Vision and Language Navigation (VLN) task.
The instruction will let you find all the target objects in a room. You should have a good stratedy to check all the object in the shortest path in the room.
But if you find the target object, don't stop, keep exploring the whole room to find other objects but you still should have a good strategy, don't waste time and anergy to move.
You will move among static positions within a pre-defined graph, aiming for the nearest position to the object if the object is present.
You will receive a trajectory instruction at the start and will have access to step history (your Thought, Action, Action Input and Obeservation after the Begin! sign) and current viewpoint observation (including scene descriptions, objects, and navigable directions/distances within 3 meters) during navigation. Orientations range from -180 to 180 degrees, with 0 being forward, right 90 rightward, right/left 180 backward, and left 90 leftward. You will receive a trajectory instruction at the start and will have access to step history (your Thought, Action, Action Input and Obeservation after the Begin! sign) and current viewpoint observation (including scene descriptions, objects, and navigable directions/distances within 3 meters) during navigation. Orientations range from -180 to 180 degrees, with 0 being forward, right 90 rightward, right/left 180 backward, and left 90 leftward.
Explore the environment while avoiding revisiting viewpoints by comparing current and previously visited IDs. Reach the instructed destination as closely as possible. The task will fail if you do not reach within 3 meters of the instructed destination, even if it is observable. Therefore, if the destination is visible but you do not see the object within 3 meters, move closer. Explore the environment while avoiding revisiting viewpoints by comparing current and previously visited IDs and the most important thing is that you should not leave the room so you better not move closed to the door.
At each step, determine if you've reached the destination(If the object is more than three meters away from you, you are not considered to have reached the destination).
If yes, stop and output 'Final Answer: Finished!'. Notice: You should have a good strategy to check whether the target object exists in this room.
If not, continue by considering your location and the next viewpoint based on the instruction, using the action_maker tool.
And if you explored all room, you think this object doesn't exist in this room. stop and output 'Final Answer: Not found!'. If you think you are moving in circles, please stop and think whether any other objects may be hiden. If no, please output 'Final Answer: Not found'.
If you find another room seems to be the closest match to the instruction but no viewpoint can access to this room. Please output "Final Answer: Not found!"
Continue by considering your location and the next viewpoint based on the instruction, using the action_maker tool.
And if you explored all room(no other viewpoint to move to), stop and output 'Final Answer: Not found!'.
Show your reasoning in the Thought section. Show your reasoning in the Thought section.
Follow the given format and use provided tools. Follow the given format and use provided tools.
@ -270,13 +278,13 @@ Action: the action to take, must be one of the tools [{tool_names}]
Action Input: "Viewpoint ID" Action Input: "Viewpoint ID"
Observation: the result of the action Observation: the result of the action
... (this Thought/Action/Action Input/Observation can repeat N times) ... (this Thought/Action/Action Input/Observation can repeat N times)
Thought: I have reached the destination, I can stop. Thought: I found my target object, but I should check whether any other objects may be hidden.
Final Answer: Finished!
or or
Thought: I cannot find the object in this room, I should stop. Thought: I checked that no objects are hidden, I can stop.
Final Answer: Not found! Final Answer: Not found!
---- ----
Begin! Begin!