NavGPT_explore_module/nav_src/utils/ops.py
2023-10-20 03:41:33 +10:30

38 lines
1.1 KiB
Python

import numpy as np
import torch
def pad_tensors(tensors, lens=None, pad=0):
"""B x [T, ...]"""
if lens is None:
lens = [t.size(0) for t in tensors]
max_len = max(lens)
bs = len(tensors)
hid = list(tensors[0].size()[1:])
size = [bs, max_len] + hid
dtype = tensors[0].dtype
device = tensors[0].device
output = torch.zeros(*size, dtype=dtype).to(device)
if pad:
output.data.fill_(pad)
for i, (t, l) in enumerate(zip(tensors, lens)):
output.data[i, :l, ...] = t.data
return output
def gen_seq_masks(seq_lens, max_len=None):
if max_len is None:
max_len = max(seq_lens)
if isinstance(seq_lens, torch.Tensor):
device = seq_lens.device
masks = torch.arange(max_len).to(device).repeat(len(seq_lens), 1) < seq_lens.unsqueeze(1)
return masks
if max_len == 0:
return np.zeros((len(seq_lens), 0), dtype=np.bool)
seq_lens = np.array(seq_lens)
batch_size = len(seq_lens)
masks = np.arange(max_len).reshape(-1, max_len).repeat(batch_size, 0)
masks = masks < seq_lens.reshape(-1, 1)
return masks