233 lines
6.8 KiB
C
233 lines
6.8 KiB
C
#include <stdio.h>
|
|
#include <float.h>
|
|
#include <stdbool.h>
|
|
#include <limits.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "constant.h"
|
|
#include "enviroment.h"
|
|
|
|
/*
|
|
Return the index with the max value in the array
|
|
|
|
Args:
|
|
- float *arr (array's address)
|
|
- short length (integer): array's length
|
|
|
|
Results:
|
|
- short index (integer): the index with the max value
|
|
*/
|
|
short float_argmax(float *arr, short length){
|
|
float ans = -1, max = -FLT_MAX;
|
|
for (short i=0; i<length; i++){
|
|
if (arr[i] > max){
|
|
max = arr[i];
|
|
ans = i;
|
|
}
|
|
}
|
|
return ans;
|
|
}
|
|
|
|
|
|
/*
|
|
Choose the next action with Epsilon-Greedy.
|
|
EPSILON means the probability to choose the best action in this state from Q-Table.
|
|
(1-EPSILON) to random an action to do.
|
|
|
|
Args:
|
|
- short *table (array's address): state table for Q-Learning
|
|
- short *board (array's address): chessboards' status
|
|
- int state (integer, state hash): hash for board's status
|
|
|
|
Results:
|
|
- short best_choice
|
|
*/
|
|
short bot_choose_action(float *table, short *board, int state){
|
|
|
|
// get available actions for choosing
|
|
short available_actions[9];
|
|
short available_actions_length;
|
|
get_available_actions(board, available_actions, &available_actions_length);
|
|
|
|
// use argmax() to find the best choise,
|
|
// first we should build an available_actions_state array for saving the state for all available choise.
|
|
float available_actions_state[9];
|
|
short available_actions_state_index[9];
|
|
short available_actions_state_length, index = 0;
|
|
short temp_index, best_choice;
|
|
bool zeros = true;
|
|
for (short i=0; i<available_actions_length; i++){
|
|
temp_index = available_actions[i];
|
|
available_actions_state[index] = *(table + state * ACTION_NUM + temp_index);
|
|
if (available_actions_state[index] != 0.0){
|
|
zeros = false;
|
|
}
|
|
available_actions_state_index[index] = temp_index;
|
|
index++;
|
|
}
|
|
best_choice = float_argmax(available_actions_state, index);
|
|
best_choice = available_actions_state_index[best_choice];
|
|
|
|
// Epsilon-Greedy
|
|
// If random number > EPSILON -> random a action
|
|
// If random number < EPSILON -> choose the best action in this state.
|
|
double random_num = (double) rand() / (RAND_MAX + 1.0);
|
|
if ((random_num > EPSILON) || zeros){
|
|
best_choice = available_actions_state_index[ rand() % index ];
|
|
}
|
|
|
|
return best_choice;
|
|
}
|
|
|
|
/*
|
|
Opponent random choose a action to do.
|
|
|
|
Args:
|
|
- short *table (array's address): state table for Q-Learning
|
|
- short *board (array's address): chessboards' status
|
|
- int state (integer, state hash): hash for board's status
|
|
|
|
Results:
|
|
- short choice (integer): random, -1 means no available action to choose
|
|
*/
|
|
short opponent_random_action(float *table, short *board, int state){
|
|
|
|
// get available actions for choosing
|
|
short available_actions[9];
|
|
short available_action_length;
|
|
get_available_actions(board, available_actions, &available_action_length);
|
|
|
|
if (available_action_length == 0){
|
|
return -1;
|
|
}
|
|
|
|
// random
|
|
short choice;
|
|
choice = (short)( rand() % available_action_length );
|
|
choice = available_actions[choice];
|
|
|
|
return choice;
|
|
}
|
|
|
|
/*
|
|
Inilialize the Q-Table
|
|
|
|
Args:
|
|
- float *table (two-dim array's start address)
|
|
|
|
Results:
|
|
- None.
|
|
*/
|
|
void init_table(float *table){
|
|
for (int i=0; i<STATE_NUM; i++){
|
|
for (int j=0; j<ACTION_NUM; j++){
|
|
*(table + i * ACTION_NUM + j) = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
Give the chessboard & state, it will return the max reward with the best choice
|
|
|
|
Args:
|
|
- float *table (2-dim array's start address)
|
|
- short *board (1-dim array's start address): chessboard's address
|
|
- int state (integer): board state's hash
|
|
|
|
Results:
|
|
- int max_reward
|
|
*/
|
|
float get_estimate_reward(float *table, short *board, int state){
|
|
short available_actions[9];
|
|
short available_action_length;
|
|
get_available_actions(board, available_actions, &available_action_length);
|
|
|
|
float available_actions_state[9];
|
|
for (short i=0; i<available_action_length; i++){
|
|
available_actions_state[i] = *(table + state * ACTION_NUM + available_actions[i]); // table[state][available_actions[i]]
|
|
}
|
|
|
|
short ans_index;
|
|
ans_index = float_argmax(available_actions_state, available_action_length);
|
|
return available_actions_state[ans_index];
|
|
}
|
|
|
|
/*
|
|
Run Q-learning Evaluation or Training.
|
|
|
|
Args:
|
|
- float *table (2-dim array's start address)
|
|
- short *board (1-dim array's start address): chessboard's address
|
|
- bool train: train or not
|
|
- int times: how many episode to simulate
|
|
- bool plot: whether to plot the gaming process
|
|
|
|
Results:
|
|
- None
|
|
*/
|
|
void run(float *table, short *board, bool train, int times, bool plot){
|
|
short available_actions[9];
|
|
short available_actions_length;
|
|
short winner;
|
|
short choice, opponent_choice;
|
|
int state, _state;
|
|
float estimate_r, estimate_r_, real_r, r, opponent_r;
|
|
struct action a;
|
|
|
|
int win = 0;
|
|
|
|
for (int episode=0; episode<times; episode++){
|
|
reset(board);
|
|
state = state_hash(board);
|
|
while (1){
|
|
// bot choose the action
|
|
choice = bot_choose_action(table, board, state);
|
|
a.loc = choice;
|
|
a.player = BOT_SYMBOL;
|
|
|
|
estimate_r = *(table + state * ACTION_NUM + choice);
|
|
act(board, &a, &_state, &r, &opponent_r, &winner);
|
|
if (plot) show(board);
|
|
|
|
// opponent random
|
|
if (winner == 0){
|
|
opponent_choice = opponent_random_action(table, board, state_hash(board));
|
|
if (opponent_choice != -1){
|
|
a.loc = opponent_choice;
|
|
a.player = OPPONENT_SYMBOL;
|
|
act(board, &a, &_state, &opponent_r, &r, &winner);
|
|
if (plot) show(board);
|
|
}
|
|
}
|
|
get_available_actions(board, available_actions, &available_actions_length);
|
|
|
|
if ((winner != 0) || (available_actions_length == 0)){
|
|
if (plot){
|
|
printf("winner: %d, reward: %f, oppo reward: %f\n", winner, r, opponent_r);
|
|
printf("==========================================================\n");
|
|
}
|
|
real_r = r;
|
|
} else {
|
|
estimate_r_ = get_estimate_reward(table, board, _state);
|
|
real_r = r + LAMBDA * estimate_r_;
|
|
}
|
|
if (train){
|
|
// printf("update");
|
|
*(table + state * ACTION_NUM + choice) += ( LR * (real_r - estimate_r) ); // table[state][choice] += LR * (real_r - estimate_r)
|
|
}
|
|
state = _state;
|
|
|
|
if ((winner != 0) || (available_actions_length == 0)){
|
|
// printf("break\n");
|
|
if (winner == 1){
|
|
win += 1;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!train)
|
|
printf("%d/%d, %f\%\n", win, 10000, (float)win/10000);
|
|
}
|