Q-learning-in-C/q-learning.c

233 lines
6.8 KiB
C

#include <stdio.h>
#include <float.h>
#include <stdbool.h>
#include <limits.h>
#include <stdlib.h>
#include "constant.h"
#include "enviroment.h"
/*
Return the index with the max value in the array
Args:
- float *arr (array's address)
- short length (integer): array's length
Results:
- short index (integer): the index with the max value
*/
short float_argmax(float *arr, short length){
float ans = -1, max = -FLT_MAX;
for (short i=0; i<length; i++){
if (arr[i] > max){
max = arr[i];
ans = i;
}
}
return ans;
}
/*
Choose the next action with Epsilon-Greedy.
EPSILON means the probability to choose the best action in this state from Q-Table.
(1-EPSILON) to random an action to do.
Args:
- short *table (array's address): state table for Q-Learning
- short *board (array's address): chessboards' status
- int state (integer, state hash): hash for board's status
Results:
- short best_choice
*/
short bot_choose_action(float *table, short *board, int state){
// get available actions for choosing
short available_actions[9];
short available_actions_length;
get_available_actions(board, available_actions, &available_actions_length);
// use argmax() to find the best choise,
// first we should build an available_actions_state array for saving the state for all available choise.
float available_actions_state[9];
short available_actions_state_index[9];
short available_actions_state_length, index = 0;
short temp_index, best_choice;
bool zeros = true;
for (short i=0; i<available_actions_length; i++){
temp_index = available_actions[i];
available_actions_state[index] = *(table + state * ACTION_NUM + temp_index);
if (available_actions_state[index] != 0.0){
zeros = false;
}
available_actions_state_index[index] = temp_index;
index++;
}
best_choice = float_argmax(available_actions_state, index);
best_choice = available_actions_state_index[best_choice];
// Epsilon-Greedy
// If random number > EPSILON -> random a action
// If random number < EPSILON -> choose the best action in this state.
double random_num = (double) rand() / (RAND_MAX + 1.0);
if ((random_num > EPSILON) || zeros){
best_choice = available_actions_state_index[ rand() % index ];
}
return best_choice;
}
/*
Opponent random choose a action to do.
Args:
- short *table (array's address): state table for Q-Learning
- short *board (array's address): chessboards' status
- int state (integer, state hash): hash for board's status
Results:
- short choice (integer): random, -1 means no available action to choose
*/
short opponent_random_action(float *table, short *board, int state){
// get available actions for choosing
short available_actions[9];
short available_action_length;
get_available_actions(board, available_actions, &available_action_length);
if (available_action_length == 0){
return -1;
}
// random
short choice;
choice = (short)( rand() % available_action_length );
choice = available_actions[choice];
return choice;
}
/*
Inilialize the Q-Table
Args:
- float *table (two-dim array's start address)
Results:
- None.
*/
void init_table(float *table){
for (int i=0; i<STATE_NUM; i++){
for (int j=0; j<ACTION_NUM; j++){
*(table + i * ACTION_NUM + j) = 0;
}
}
}
/*
Give the chessboard & state, it will return the max reward with the best choice
Args:
- float *table (2-dim array's start address)
- short *board (1-dim array's start address): chessboard's address
- int state (integer): board state's hash
Results:
- int max_reward
*/
float get_estimate_reward(float *table, short *board, int state){
short available_actions[9];
short available_action_length;
get_available_actions(board, available_actions, &available_action_length);
float available_actions_state[9];
for (short i=0; i<available_action_length; i++){
available_actions_state[i] = *(table + state * ACTION_NUM + available_actions[i]); // table[state][available_actions[i]]
}
short ans_index;
ans_index = float_argmax(available_actions_state, available_action_length);
return available_actions_state[ans_index];
}
/*
Run Q-learning Evaluation or Training.
Args:
- float *table (2-dim array's start address)
- short *board (1-dim array's start address): chessboard's address
- bool train: train or not
- int times: how many episode to simulate
- bool plot: whether to plot the gaming process
Results:
- None
*/
void run(float *table, short *board, bool train, int times, bool plot){
short available_actions[9];
short available_actions_length;
short winner;
short choice, opponent_choice;
int state, _state;
float estimate_r, estimate_r_, real_r, r, opponent_r;
struct action a;
int win = 0;
for (int episode=0; episode<times; episode++){
reset(board);
state = state_hash(board);
while (1){
// bot choose the action
choice = bot_choose_action(table, board, state);
a.loc = choice;
a.player = BOT_SYMBOL;
estimate_r = *(table + state * ACTION_NUM + choice);
act(board, &a, &_state, &r, &opponent_r, &winner);
if (plot) show(board);
// opponent random
if (winner == 0){
opponent_choice = opponent_random_action(table, board, state_hash(board));
if (opponent_choice != -1){
a.loc = opponent_choice;
a.player = OPPONENT_SYMBOL;
act(board, &a, &_state, &opponent_r, &r, &winner);
if (plot) show(board);
}
}
get_available_actions(board, available_actions, &available_actions_length);
if ((winner != 0) || (available_actions_length == 0)){
if (plot){
printf("winner: %d, reward: %f, oppo reward: %f\n", winner, r, opponent_r);
printf("==========================================================\n");
}
real_r = r;
} else {
estimate_r_ = get_estimate_reward(table, board, _state);
real_r = r + LAMBDA * estimate_r_;
}
if (train){
// printf("update");
*(table + state * ACTION_NUM + choice) += ( LR * (real_r - estimate_r) ); // table[state][choice] += LR * (real_r - estimate_r)
}
state = _state;
if ((winner != 0) || (available_actions_length == 0)){
// printf("break\n");
if (winner == 1){
win += 1;
}
break;
}
}
}
if (!train)
printf("%d/%d, %f\%\n", win, 10000, (float)win/10000);
}