{ "cells": [ { "cell_type": "code", "execution_count": 2, "id": "4a54ab90", "metadata": {}, "outputs": [], "source": [ "import torch" ] }, { "cell_type": "code", "execution_count": 3, "id": "6533ad3a", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "torch.cuda.is_available()" ] }, { "cell_type": "code", "execution_count": 9, "id": "d44a0818", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[6.7262e-44, 0.0000e+00, 6.8664e-44],\n", " [0.0000e+00, 3.4130e+20, 3.0694e-41],\n", " [3.8088e+20, 3.0694e-41, 1.4013e-45],\n", " [0.0000e+00, 0.0000e+00, 0.0000e+00],\n", " [1.3452e-43, 0.0000e+00, 1.3452e-43]])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.empty(5, 3)\n", "x" ] }, { "cell_type": "code", "execution_count": 16, "id": "637d9ebe", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "tensor([[0., 0., 0., 0., 0.],\n", " [0., 0., 0., 0., 0.],\n", " [0., 0., 0., 0., 0.]])" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "x = torch.zeros((3, 5), dtype=torch.float)\n", "x" ] }, { "cell_type": "code", "execution_count": 28, "id": "dd60207e", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.1210, 0.4432, 0.5018, 0.2111, 0.1256],\n", " [0.6894, 0.3928, 0.0216, 0.1406, 0.5416],\n", " [0.0044, 0.4856, 0.2907, 0.9889, 0.2060]])\n", "tensor([[0.7810, 0.4015, 0.9711, 0.1654, 0.3593],\n", " [0.5972, 0.1060, 0.6192, 0.6601, 0.9575],\n", " [0.3084, 0.4609, 0.6921, 0.3311, 0.6630]])\n", "tensor([[0.9020, 0.8447, 1.4729, 0.3764, 0.4850],\n", " [1.2866, 0.4987, 0.6409, 0.8006, 1.4991],\n", " [0.3128, 0.9465, 0.9828, 1.3200, 0.8690]])\n" ] } ], "source": [ "x.shape\n", "x = torch.rand_like(x, dtype=torch.float)\n", "y = torch.rand_like(x, dtype=torch.float)\n", "print(x)\n", "print(y)\n", "z = x+y\n", "print(z)" ] }, { "cell_type": "code", "execution_count": 35, "id": "0d2ed6cd", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "tensor([[0.2814, 0.6475, 0.3659, 0.4057],\n", " [0.9773, 0.5319, 0.7534, 0.8681],\n", " [0.4856, 0.3504, 0.0362, 0.6139]], requires_grad=True)\n" ] } ], "source": [ "x = torch.rand((3, 4), requires_grad=True)\n", "print(x)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.8" } }, "nbformat": 4, "nbformat_minor": 5 }