adversarial_AIRBERT/r2r_src/vlnbert/vlnbert_init.py
Shizhe Chen bbeb69aa5f init
2021-08-02 13:04:04 +00:00

72 lines
2.8 KiB
Python

import os
def get_tokenizer(args):
from transformers.pytorch_transformers import BertTokenizer
if args.vlnbert == 'oscar':
tokenizer_class = BertTokenizer
model_name_or_path = 'Oscar/pretrained_models/base-no-labels/ep_67_588997'
tokenizer = tokenizer_class.from_pretrained(model_name_or_path, do_lower_case=True)
elif args.vlnbert in ['prevalent', 'vilbert', 'objvilbert']:
tokenizer_class = BertTokenizer
tokenizer = tokenizer_class.from_pretrained('bert-base-uncased')
return tokenizer
def get_vlnbert_models(args, config=None):
if args.vlnbert == 'oscar':
from vlnbert.vlnbert_OSCAR import VLNBert
from transformers.pytorch_transformers import BertConfig
model_class = VLNBert
model_name_or_path = 'Oscar/pretrained_models/base-no-labels/ep_67_588997'
vis_config = BertConfig.from_pretrained(model_name_or_path, num_labels=2, finetuning_task='vln-r2r')
vis_config.model_type = 'visual'
vis_config.finetuning_task = 'vln-r2r'
vis_config.hidden_dropout_prob = 0.3
vis_config.hidden_size = 768
vis_config.img_feature_dim = 2176
vis_config.num_attention_heads = 12
vis_config.num_hidden_layers = 12
visual_model = model_class.from_pretrained(model_name_or_path, from_tf=False, config=vis_config)
elif args.vlnbert == 'prevalent':
from vlnbert.vlnbert_PREVALENT import VLNBert
from transformers.pytorch_transformers import BertConfig
model_class = VLNBert
if args.init_bert_file is None:
model_name_or_path = 'Prevalent/pretrained_model/pytorch_model.bin'
else:
model_name_or_path = args.init_bert_file
vis_config = BertConfig.from_pretrained('bert-base-uncased')
vis_config.img_feature_dim = 2176
vis_config.img_feature_type = ""
vis_config.vl_layers = 4
vis_config.la_layers = 9
visual_model = model_class.from_pretrained(model_name_or_path, config=vis_config)
elif args.vlnbert == 'vilbert':
from vlnbert.vlnbert_CA import VLNBert
from vlnbert.vlnbert_CA import BertConfig
model_name_or_path = args.init_bert_file
vis_config = BertConfig.from_json_file(os.path.join(
'snap/vln-bert',
'config/bert_base_6_layer_6_connect.json'))
vis_config.img_feature_dim = 2048 + args.angle_feat_size
vis_config.img_feature_type = args.features
vis_config.layer_norm_eps = 1e-12
vis_config.hidden_dropout_prob = 0.3
vis_config.v_hidden_dropout_prob = 0.3
if model_name_or_path:
visual_model = VLNBert.from_pretrained(model_name_or_path, config=vis_config)
else:
visual_model = VLNBert(vis_config)
return visual_model