adversarial_AIRBERT/reverie_src/vlnbert/vlnbert_init.py

55 lines
2.1 KiB
Python

import os
def get_tokenizer(args):
from pytorch_transformers import BertTokenizer
tokenizer_class = BertTokenizer
if args.vlnbert == 'oscar':
model_name_or_path = 'Oscar/pretrained_models/base-no-labels/ep_67_588997'
tokenizer = tokenizer_class.from_pretrained(model_name_or_path, do_lower_case=True)
elif args.vlnbert == 'vilbert':
tokenizer = tokenizer_class.from_pretrained('bert-base-uncased', do_lower_case=True)
return tokenizer
def get_vlnbert_models(args, config=None):
if args.vlnbert == 'oscar':
from vlnbert.vlnbert_OSCAR import VLNBert
from transformers.pytorch_transformers import BertConfig
model_class = VLNBert
model_name_or_path = 'Oscar/pretrained_models/base-no-labels/ep_67_588997'
vis_config = BertConfig.from_pretrained(model_name_or_path, num_labels=2, finetuning_task='vln-r2r')
vis_config.model_type = 'visual'
vis_config.finetuning_task = 'vln-r2r'
vis_config.hidden_dropout_prob = 0.3
vis_config.hidden_size = 768
vis_config.img_feature_dim = 2176
vis_config.num_attention_heads = 12
vis_config.num_hidden_layers = 12
visual_model = model_class.from_pretrained(model_name_or_path, from_tf=False, config=vis_config)
elif args.vlnbert == 'vilbert':
from vlnbert.vlnbert_CA import VLNBert
from vlnbert.vlnbert_CA import BertConfig
# '/data2/csz/VLN/R2R/released/vln-bert/run_220825_pytorch_model_10.bin'
model_name_or_path = args.init_bert_file
vis_config = BertConfig.from_json_file(os.path.join(
'snap/vln-bert',
'config/bert_base_6_layer_6_connect.json'))
vis_config.img_feature_dim = 2048 + args.angle_feat_size
vis_config.img_feature_type = args.features
vis_config.layer_norm_eps = 1e-12
vis_config.hidden_dropout_prob = 0.3
vis_config.v_hidden_dropout_prob = 0.3
if model_name_or_path:
visual_model = VLNBert.from_pretrained(model_name_or_path, config=vis_config)
else:
visual_model = VLNBert(vis_config)
return visual_model