# PREVALENT, 2020, weituo.hao@duke.edu # Modified in Recurrent VLN-BERT, 2020, Yicong.Hong@anu.edu.au from __future__ import absolute_import, division, print_function, unicode_literals import json import logging import math import os import sys from io import open import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss #from transformers.pytorch_transformers.modeling_bert import BertPreTrainedModel, BertConfig from pytorch_transformers.modeling_bert import BertPreTrainedModel, BertConfig import pdb logger = logging.getLogger(__name__) def gelu(x): """Implementation of the gelu activation function. For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) Also see https://arxiv.org/abs/1606.08415 """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) def swish(x): return x * torch.sigmoid(x) ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish} try: from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm except (ImportError, AttributeError) as e: logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .") BertLayerNorm = torch.nn.LayerNorm class BertEmbeddings(nn.Module): """Construct the embeddings from word, position and token_type embeddings. """ def __init__(self, config): super(BertEmbeddings, self).__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0) self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, input_ids, token_type_ids=None, position_ids=None): seq_length = input_ids.size(1) if position_ids is None: position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) position_ids = position_ids.unsqueeze(0).expand_as(input_ids) if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) words_embeddings = self.word_embeddings(input_ids) position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = words_embeddings + position_embeddings + token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class BertSelfAttention(nn.Module): def __init__(self, config): super(BertSelfAttention, self).__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.output_attentions = True self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, attention_mask, head_mask=None): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(hidden_states) mixed_value_layer = self.value(hidden_states) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) outputs = (context_layer, attention_scores) if self.output_attentions else (context_layer,) return outputs class BertSelfOutput(nn.Module): def __init__(self, config): super(BertSelfOutput, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertAttention(nn.Module): def __init__(self, config): super(BertAttention, self).__init__() self.self = BertSelfAttention(config) self.output = BertSelfOutput(config) def forward(self, input_tensor, attention_mask, head_mask=None): self_outputs = self.self(input_tensor, attention_mask, head_mask) attention_output = self.output(self_outputs[0], input_tensor) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs class BertIntermediate(nn.Module): def __init__(self, config): super(BertIntermediate, self).__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states class BertOutput(nn.Module): def __init__(self, config): super(BertOutput, self).__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.LayerNorm(hidden_states + input_tensor) return hidden_states class BertLayer(nn.Module): def __init__(self, config): super(BertLayer, self).__init__() self.attention = BertAttention(config) self.intermediate = BertIntermediate(config) self.output = BertOutput(config) def forward(self, hidden_states, attention_mask, head_mask=None): attention_outputs = self.attention(hidden_states, attention_mask, head_mask) attention_output = attention_outputs[0] intermediate_output = self.intermediate(attention_output) layer_output = self.output(intermediate_output, attention_output) outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them return outputs class BertPooler(nn.Module): def __init__(self, config): super(BertPooler, self).__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states): # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output class BertXAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() self.att = BertOutAttention(config, ctx_dim=ctx_dim) self.output = BertSelfOutput(config) def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None): output, attention_scores = self.att(input_tensor, ctx_tensor, ctx_att_mask) attention_output = self.output(output, input_tensor) return attention_output, attention_scores class BertOutAttention(nn.Module): def __init__(self, config, ctx_dim=None): super().__init__() if config.hidden_size % config.num_attention_heads != 0: raise ValueError( "The hidden size (%d) is not a multiple of the number of attention " "heads (%d)" % (config.hidden_size, config.num_attention_heads)) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size # visual_dim = 2048 if ctx_dim is None: ctx_dim =config.hidden_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(ctx_dim, self.all_head_size) self.value = nn.Linear(ctx_dim, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x): new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(*new_x_shape) return x.permute(0, 2, 1, 3) def forward(self, hidden_states, context, attention_mask=None): mixed_query_layer = self.query(hidden_states) mixed_key_layer = self.key(context) mixed_value_layer = self.value(context) query_layer = self.transpose_for_scores(mixed_query_layer) key_layer = self.transpose_for_scores(mixed_key_layer) value_layer = self.transpose_for_scores(mixed_value_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Apply the attention mask is (precomputed for all layers in BertModel forward() function) if attention_mask is not None: attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.Softmax(dim=-1)(attention_scores) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) return context_layer, attention_scores class LXRTXLayer(nn.Module): def __init__(self, config): super().__init__() self.config = config # Lang self-att and FFN layer self.lang_self_att = BertAttention(config) self.lang_inter = BertIntermediate(config) self.lang_output = BertOutput(config) # Visn self-att and FFN layer self.visn_self_att = BertAttention(config) self.visn_inter = BertIntermediate(config) self.visn_output = BertOutput(config) # The cross attention layer self.visual_attention = BertXAttention(config) def cross_att(self, lang_input, lang_attention_mask, visn_input, visn_attention_mask): ''' Cross Attention -- cross for vision not for language ''' visn_att_output, attention_scores = self.visual_attention(visn_input, lang_input, ctx_att_mask=lang_attention_mask) return visn_att_output, attention_scores def self_att(self, visn_input, visn_attention_mask): ''' Self Attention -- on visual features with language clues ''' visn_att_output = self.visn_self_att(visn_input, visn_attention_mask) return visn_att_output def output_fc(self, visn_input): ''' Feed forward ''' visn_inter_output = self.visn_inter(visn_input) visn_output = self.visn_output(visn_inter_output, visn_input) return visn_output def forward(self, lang_feats, lang_attention_mask, visn_feats, visn_attention_mask, tdx): ''' visual self-attention with state ''' visn_att_output = torch.cat((lang_feats[:, 0:1, :], visn_feats), dim=1) state_vis_mask = torch.cat((lang_attention_mask[:,:,:,0:1], visn_attention_mask), dim=-1) ''' state and vision attend to language ''' visn_att_output, cross_attention_scores = self.cross_att(lang_feats[:, 1:, :], lang_attention_mask[:, :, :, 1:], visn_att_output, state_vis_mask) language_attention_scores = cross_attention_scores[:, :, 0, :] state_visn_att_output = self.self_att(visn_att_output, state_vis_mask) state_visn_output = self.output_fc(state_visn_att_output[0]) visn_att_output = state_visn_output[:, 1:, :] lang_att_output = torch.cat((state_visn_output[:, 0:1, :], lang_feats[:,1:,:]), dim=1) visual_attention_scores = state_visn_att_output[1][:, :, 0, 1:] return lang_att_output, visn_att_output, language_attention_scores, visual_attention_scores class VisionEncoder(nn.Module): def __init__(self, vision_size, config): super().__init__() feat_dim = vision_size # Object feature encoding self.visn_fc = nn.Linear(feat_dim, config.hidden_size) self.visn_layer_norm = BertLayerNorm(config.hidden_size, eps=1e-12) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, visn_input): feats = visn_input x = self.visn_fc(feats) x = self.visn_layer_norm(x) output = self.dropout(x) return output class VLNBert(BertPreTrainedModel): def __init__(self, config): super(VLNBert, self).__init__(config) self.embeddings = BertEmbeddings(config) self.pooler = BertPooler(config) self.img_dim = config.img_feature_dim # 2176 logger.info('VLNBert Image Dimension: {}'.format(self.img_dim)) self.img_feature_type = config.img_feature_type # '' self.vl_layers = config.vl_layers # 4 self.la_layers = config.la_layers # 9 self.lalayer = nn.ModuleList( [BertLayer(config) for _ in range(self.la_layers)]) self.addlayer = nn.ModuleList( [LXRTXLayer(config) for _ in range(self.vl_layers)]) self.vision_encoder = VisionEncoder(self.config.img_feature_dim, self.config) # self.apply(self.init_weights) self.init_weights() def forward(self, mode, input_ids, token_type_ids=None, attention_mask=None, lang_mask=None, vis_mask=None, position_ids=None, head_mask=None, img_feats=None): attention_mask = lang_mask if token_type_ids is None: token_type_ids = torch.zeros_like(input_ids) extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 head_mask = [None] * self.config.num_hidden_layers if mode == 'language': ''' LXMERT language branch (in VLN only perform this at initialization) ''' embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids) text_embeds = embedding_output for layer_module in self.lalayer: temp_output = layer_module(text_embeds, extended_attention_mask) text_embeds = temp_output[0] sequence_output = text_embeds pooled_output = self.pooler(sequence_output) return pooled_output, sequence_output elif mode == 'visual': ''' LXMERT visual branch (no language processing during navigation) ''' text_embeds = input_ids text_mask = extended_attention_mask img_embedding_output = self.vision_encoder(img_feats) img_seq_len = img_feats.shape[1] batch_size = text_embeds.size(0) img_seq_mask = vis_mask extended_img_mask = img_seq_mask.unsqueeze(1).unsqueeze(2) extended_img_mask = extended_img_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility extended_img_mask = (1.0 - extended_img_mask) * -10000.0 img_mask = extended_img_mask lang_output = text_embeds visn_output = img_embedding_output for tdx, layer_module in enumerate(self.addlayer): lang_output, visn_output, language_attention_scores, visual_attention_scores = layer_module(lang_output, text_mask, visn_output, img_mask, tdx) sequence_output = lang_output pooled_output = self.pooler(sequence_output) language_state_scores = language_attention_scores.mean(dim=1) visual_action_scores = visual_attention_scores.mean(dim=1) # weighted_feat language_attention_probs = nn.Softmax(dim=-1)(language_state_scores.clone()).unsqueeze(-1) visual_attention_probs = nn.Softmax(dim=-1)(visual_action_scores.clone()).unsqueeze(-1) attended_language = (language_attention_probs * text_embeds[:, 1:, :]).sum(1) attended_visual = (visual_attention_probs * img_embedding_output).sum(1) return pooled_output, visual_action_scores, attended_language, attended_visual