# Entity-Graph-VLN Code of the NeurIPS 2020 paper: **Language and Visual Entity Relationship Graph for Agent Navigation**
[**Yicong Hong**](http://www.yiconghong.me/), [Cristian Rodriguez-Opazo](https://crodriguezo.github.io/), [Yuankai Qi](https://sites.google.com/site/yuankiqi/home), [Qi Wu](http://www.qi-wu.me/), [Stephen Gould](http://users.cecs.anu.edu.au/~sgould/)
[[Paper](https://papers.nips.cc/paper/2020/hash/56dc0997d871e9177069bb472574eb29-Abstract.html)] [[Supplemental](https://papers.nips.cc/paper/2020/file/56dc0997d871e9177069bb472574eb29-Supplemental.pdf)] [[GitHub](https://github.com/YicongHong/Entity-Graph-VLN)]

## Prerequisites ### Installation Install the [Matterport3D Simulator](https://github.com/peteanderson80/Matterport3DSimulator). Please find the versions of packages in our environment [here](https://github.com/YicongHong/Entity-Graph-VLN/blob/master/entity_graph_vln.yml). In particular, we use: - Python 3.6.9 - NumPy 1.18.1 - OpenCV 3.4.2 - PyTorch 1.3.0 - Torchvision 0.4.1 ### Data Preparation Please follow the instructions below to prepare the data in directories: - `connectivity` - Download the [connectivity maps [23.8MB]](https://github.com/peteanderson80/Matterport3DSimulator/tree/master/connectivity). - `data` - Download the [R2R data [5.8MB]](https://github.com/peteanderson80/Matterport3DSimulator/tree/master/tasks/R2R/data). - Download the vocabulary and the [augmented data from EnvDrop [79.5MB]](https://github.com/airsplay/R2R-EnvDrop/tree/master/tasks/R2R/data). - `img_features` - Download the [Scene features [4.2GB]](https://www.dropbox.com/s/85tpa6tc3enl5ud/ResNet-152-places365.zip?dl=1) (ResNet-152-Places365). - Download the pre-processed [Object features and vocabulary [1.3GB]](https://zenodo.org/record/4310441/files/objects.zip?download=1) ([Caffe Faster-RCNN](https://github.com/peteanderson80/bottom-up-attention)). ### Trained Network Weights - `snap` - Download the trained [network weights [146.0MB]](https://zenodo.org/record/4310441/files/snap.zip?download=1) ## R2R Navigation Please read Peter Anderson's VLN paper for the [R2R Navigation task](https://arxiv.org/abs/1711.07280). Our code is based on the code structure of the [EnvDrop](https://github.com/airsplay/R2R-EnvDrop). ### Reproduce Testing Results To replicate the performance reported in our paper, load the trained network weights and run validation: ```bash bash run/agent.bash ``` ### Training #### Navigator To train the network from scratch, first train a Navigator on the R2R training split: Modify `run/agent.bash`, remove the argument for `--load` and set `--train listener`. Then, ```bash bash run/agent.bash ``` The trained Navigator will be saved under `snap/`. #### Speaker You also need to train a [Speaker](https://github.com/airsplay/R2R-EnvDrop) for augmented training: ```bash bash run/speak.bash ``` The trained Speaker will be saved under `snap/`. #### Augmented Navigator Finally, keep training the Navigator with the mixture of original data and [augmented data](http://www.cs.unc.edu/~airsplay/aug_paths.json): ```bash bash run/bt_envdrop.bash ``` We apply a one-step learning rate decay to 1e-5 when training saturates. ## Citation If you use or discuss our Entity Relationship Graph, please cite our paper: ``` @article{hong2020language, title={Language and Visual Entity Relationship Graph for Agent Navigation}, author={Hong, Yicong and Rodriguez, Cristian and Qi, Yuankai and Wu, Qi and Gould, Stephen}, journal={Advances in Neural Information Processing Systems}, volume={33}, year={2020} } ```