adversarial_VLNBERT/r2r_src/param.py

121 lines
6.2 KiB
Python

import argparse
import os
import torch
class Param:
def __init__(self):
self.parser = argparse.ArgumentParser(description="")
# General
self.parser.add_argument('--iters', type=int, default=100000)
self.parser.add_argument('--name', type=str, default='default')
self.parser.add_argument('--train', type=str, default='speaker')
self.parser.add_argument("--load_pretrain", default=None)
# --load_pretrain snap/vlnp-v3.0.0/state_dict/Iter_100000
self.parser.add_argument('--test_only', type=int, default=0)
self.parser.add_argument('--description', type=str, default='no description\n')
# Data preparation
self.parser.add_argument('--maxInput', type=int, default=80, help="max input instruction")
# self.parser.add_argument('--maxDecode', type=int, default=120, help="max input instruction")
self.parser.add_argument('--maxAction', type=int, default=20, help='Max Action sequence')
self.parser.add_argument('--batchSize', type=int, default=64)
self.parser.add_argument('--ignoreid', type=int, default=-100)
self.parser.add_argument('--directions', type=int, default=4, help='agent-centered visual directions') # fix to 4 for now
self.parser.add_argument('--feature_size', type=int, default=2048)
self.parser.add_argument("--loadOptim",action="store_const", default=False, const=True)
# Load the model from
self.parser.add_argument("--speaker", default=None)
self.parser.add_argument("--listener", default=None)
self.parser.add_argument("--load", default=None)
# snap/vlnb-v3.0.0/state_dict/Iter_100000
# More Paths from
self.parser.add_argument("--aug", default=None)
# Listener Model Config
self.parser.add_argument("--zeroInit", dest='zero_init', action='store_const', default=False, const=True)
self.parser.add_argument("--mlWeight", dest='ml_weight', type=float, default=0.05)
self.parser.add_argument("--teacherWeight", dest='teacher_weight', type=float, default=1.)
self.parser.add_argument("--accumulateGrad", dest='accumulate_grad', type=int, default=0)
self.parser.add_argument("--features", type=str, default='imagenet')
# Env Dropout Param
self.parser.add_argument('--featdropout', type=float, default=0.3)
# SSL configuration
self.parser.add_argument("--selfTrain", dest='self_train', action='store_const', default=False, const=True)
# Submision configuration
self.parser.add_argument("--candidates", type=int, default=1)
self.parser.add_argument("--paramSearch", dest='param_search', action='store_const', default=False, const=True)
self.parser.add_argument("--submit", action='store_const', default=False, const=True)
self.parser.add_argument("--beam", action="store_const", default=False, const=True)
self.parser.add_argument("--alpha", type=float, default=0.5)
# Training Configurations
self.parser.add_argument('--optim', type=str, default='rms') # rms, adam
self.parser.add_argument('--lr', type=float, default=0.0001, help="The learning rate")
self.parser.add_argument('--decay', dest='weight_decay', type=float, default=0.)
self.parser.add_argument('--dropout', type=float, default=0.5)
self.parser.add_argument('--feedback', type=str, default='sample',
help='How to choose next position, one of ``teacher``, ``sample`` and ``argmax``')
self.parser.add_argument('--teacher', type=str, default='final',
help="How to get supervision. one of ``next`` and ``final`` ")
self.parser.add_argument('--epsilon', type=float, default=0.1)
# Model hyper params:
self.parser.add_argument('--rnnDim', dest="rnn_dim", type=int, default=512)
self.parser.add_argument('--wemb', type=int, default=256)
self.parser.add_argument('--aemb', type=int, default=64)
self.parser.add_argument('--proj', type=int, default=512)
self.parser.add_argument("--fast", dest="fast_train", action="store_const", default=False, const=True)
self.parser.add_argument("--valid", action="store_const", default=False, const=True)
self.parser.add_argument("--candidate", dest="candidate_mask",
action="store_const", default=False, const=True)
self.parser.add_argument("--bidir", type=bool, default=True) # This is not full option
self.parser.add_argument("--encode", type=str, default="word") # sub, word, sub_ctx
self.parser.add_argument("--subout", dest="sub_out", type=str, default="tanh") # tanh, max
self.parser.add_argument("--attn", type=str, default="soft") # soft, mono, shift, dis_shift
self.parser.add_argument("--angleFeatSize", dest="angle_feat_size", type=int, default=4)
# A2C
self.parser.add_argument("--gamma", default=0.9, type=float)
self.parser.add_argument("--normalize", dest="normalize_loss", default="total", type=str, help='batch or total')
self.args = self.parser.parse_args()
if self.args.optim == 'rms':
print("Optimizer: Using RMSProp")
self.args.optimizer = torch.optim.RMSprop
elif self.args.optim == 'adam':
print("Optimizer: Using Adam")
self.args.optimizer = torch.optim.Adam
elif self.args.optim == 'adamW':
print("Optimizer: Using AdamW")
self.args.optimizer = torch.optim.AdamW
elif self.args.optim == 'sgd':
print("Optimizer: sgd")
self.args.optimizer = torch.optim.SGD
else:
assert False
param = Param()
args = param.args
args.TRAIN_VOCAB = 'tasks/R2R/data/train_vocab.txt'
args.TRAINVAL_VOCAB = 'tasks/R2R/data/trainval_vocab.txt'
args.IMAGENET_FEATURES = 'img_features/ResNet-152-imagenet.tsv'
args.CANDIDATE_FEATURES = 'img_features/ResNet-152-candidate.tsv'
args.features_fast = 'img_features/ResNet-152-imagenet-fast.tsv'
args.log_dir = 'snap/%s' % args.name
args.directions = args.directions * 3 # times 3 for up, horizon and bottom
if not os.path.exists(args.log_dir):
os.makedirs(args.log_dir)
DEBUG_FILE = open(os.path.join('snap', args.name, "debug.log"), 'w')