adversarial_VLNBERT/r2r_src/vlnbert/vlnbert_PREVALENT.py
2021-01-14 22:08:12 +11:00

450 lines
19 KiB
Python

# PREVALENT, 2020, weituo.hao@duke.edu
# Modified in Recurrent VLN-BERT, 2020, Yicong.Hong@anu.edu.au
from __future__ import absolute_import, division, print_function, unicode_literals
import json
import logging
import math
import os
import sys
from io import open
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.pytorch_transformers.modeling_bert import BertPreTrainedModel, BertConfig
import pdb
logger = logging.getLogger(__name__)
def gelu(x):
"""Implementation of the gelu activation function.
For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):
0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
Also see https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def swish(x):
return x * torch.sigmoid(x)
ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}
try:
from apex.normalization.fused_layer_norm import FusedLayerNorm as BertLayerNorm
except (ImportError, AttributeError) as e:
logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
BertLayerNorm = torch.nn.LayerNorm
class BertEmbeddings(nn.Module):
"""Construct the embeddings from word, position and token_type embeddings.
"""
def __init__(self, config):
super(BertEmbeddings, self).__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
# any TensorFlow checkpoint file
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, token_type_ids=None, position_ids=None):
seq_length = input_ids.size(1)
if position_ids is None:
position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device)
position_ids = position_ids.unsqueeze(0).expand_as(input_ids)
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = words_embeddings + position_embeddings + token_type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class BertSelfAttention(nn.Module):
def __init__(self, config):
super(BertSelfAttention, self).__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.output_attentions = True
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, attention_mask, head_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(hidden_states)
mixed_value_layer = self.value(hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
outputs = (context_layer, attention_scores) if self.output_attentions else (context_layer,)
return outputs
class BertSelfOutput(nn.Module):
def __init__(self, config):
super(BertSelfOutput, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertAttention(nn.Module):
def __init__(self, config):
super(BertAttention, self).__init__()
self.self = BertSelfAttention(config)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, attention_mask, head_mask=None):
self_outputs = self.self(input_tensor, attention_mask, head_mask)
attention_output = self.output(self_outputs[0], input_tensor)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class BertIntermediate(nn.Module):
def __init__(self, config):
super(BertIntermediate, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
if isinstance(config.hidden_act, str) or (sys.version_info[0] == 2 and isinstance(config.hidden_act, unicode)):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states):
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class BertOutput(nn.Module):
def __init__(self, config):
super(BertOutput, self).__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.LayerNorm(hidden_states + input_tensor)
return hidden_states
class BertLayer(nn.Module):
def __init__(self, config):
super(BertLayer, self).__init__()
self.attention = BertAttention(config)
self.intermediate = BertIntermediate(config)
self.output = BertOutput(config)
def forward(self, hidden_states, attention_mask, head_mask=None):
attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
attention_output = attention_outputs[0]
intermediate_output = self.intermediate(attention_output)
layer_output = self.output(intermediate_output, attention_output)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
class BertPooler(nn.Module):
def __init__(self, config):
super(BertPooler, self).__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states):
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class BertXAttention(nn.Module):
def __init__(self, config, ctx_dim=None):
super().__init__()
self.att = BertOutAttention(config, ctx_dim=ctx_dim)
self.output = BertSelfOutput(config)
def forward(self, input_tensor, ctx_tensor, ctx_att_mask=None):
output, attention_scores = self.att(input_tensor, ctx_tensor, ctx_att_mask)
attention_output = self.output(output, input_tensor)
return attention_output, attention_scores
class BertOutAttention(nn.Module):
def __init__(self, config, ctx_dim=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
"The hidden size (%d) is not a multiple of the number of attention "
"heads (%d)" % (config.hidden_size, config.num_attention_heads))
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
# visual_dim = 2048
if ctx_dim is None:
ctx_dim =config.hidden_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(ctx_dim, self.all_head_size)
self.value = nn.Linear(ctx_dim, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(self, hidden_states, context, attention_mask=None):
mixed_query_layer = self.query(hidden_states)
mixed_key_layer = self.key(context)
mixed_value_layer = self.value(context)
query_layer = self.transpose_for_scores(mixed_query_layer)
key_layer = self.transpose_for_scores(mixed_key_layer)
value_layer = self.transpose_for_scores(mixed_value_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
if attention_mask is not None:
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(*new_context_layer_shape)
return context_layer, attention_scores
class LXRTXLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# Lang self-att and FFN layer
self.lang_self_att = BertAttention(config)
self.lang_inter = BertIntermediate(config)
self.lang_output = BertOutput(config)
# Visn self-att and FFN layer
self.visn_self_att = BertAttention(config)
self.visn_inter = BertIntermediate(config)
self.visn_output = BertOutput(config)
# The cross attention layer
self.visual_attention = BertXAttention(config)
def cross_att(self, lang_input, lang_attention_mask, visn_input, visn_attention_mask):
''' Cross Attention -- cross for vision not for language '''
visn_att_output, attention_scores = self.visual_attention(visn_input, lang_input, ctx_att_mask=lang_attention_mask)
return visn_att_output, attention_scores
def self_att(self, visn_input, visn_attention_mask):
''' Self Attention -- on visual features with language clues '''
visn_att_output = self.visn_self_att(visn_input, visn_attention_mask)
return visn_att_output
def output_fc(self, visn_input):
''' Feed forward '''
visn_inter_output = self.visn_inter(visn_input)
visn_output = self.visn_output(visn_inter_output, visn_input)
return visn_output
def forward(self, lang_feats, lang_attention_mask,
visn_feats, visn_attention_mask, tdx):
''' visual self-attention with state '''
visn_att_output = torch.cat((lang_feats[:, 0:1, :], visn_feats), dim=1)
state_vis_mask = torch.cat((lang_attention_mask[:,:,:,0:1], visn_attention_mask), dim=-1)
''' state and vision attend to language '''
visn_att_output, cross_attention_scores = self.cross_att(lang_feats[:, 1:, :], lang_attention_mask[:, :, :, 1:], visn_att_output, state_vis_mask)
language_attention_scores = cross_attention_scores[:, :, 0, :]
state_visn_att_output = self.self_att(visn_att_output, state_vis_mask)
state_visn_output = self.output_fc(state_visn_att_output[0])
visn_att_output = state_visn_output[:, 1:, :]
lang_att_output = torch.cat((state_visn_output[:, 0:1, :], lang_feats[:,1:,:]), dim=1)
visual_attention_scores = state_visn_att_output[1][:, :, 0, 1:]
return lang_att_output, visn_att_output, language_attention_scores, visual_attention_scores
class VisionEncoder(nn.Module):
def __init__(self, vision_size, config):
super().__init__()
feat_dim = vision_size
# Object feature encoding
self.visn_fc = nn.Linear(feat_dim, config.hidden_size)
self.visn_layer_norm = BertLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, visn_input):
feats = visn_input
x = self.visn_fc(feats)
x = self.visn_layer_norm(x)
output = self.dropout(x)
return output
class VLNBert(BertPreTrainedModel):
def __init__(self, config):
super(VLNBert, self).__init__(config)
self.embeddings = BertEmbeddings(config)
self.pooler = BertPooler(config)
self.img_dim = config.img_feature_dim # 2176
logger.info('VLNBert Image Dimension: {}'.format(self.img_dim))
self.img_feature_type = config.img_feature_type # ''
self.vl_layers = config.vl_layers # 4
self.la_layers = config.la_layers # 9
self.lalayer = nn.ModuleList(
[BertLayer(config) for _ in range(self.la_layers)])
self.addlayer = nn.ModuleList(
[LXRTXLayer(config) for _ in range(self.vl_layers)])
self.vision_encoder = VisionEncoder(self.config.img_feature_dim, self.config)
self.apply(self.init_weights)
def forward(self, mode, input_ids, token_type_ids=None,
attention_mask=None, lang_mask=None, vis_mask=None, position_ids=None, head_mask=None, img_feats=None):
attention_mask = lang_mask
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
head_mask = [None] * self.config.num_hidden_layers
if mode == 'language':
''' LXMERT language branch (in VLN only perform this at initialization) '''
embedding_output = self.embeddings(input_ids, position_ids=position_ids, token_type_ids=token_type_ids)
text_embeds = embedding_output
for layer_module in self.lalayer:
temp_output = layer_module(text_embeds, extended_attention_mask)
text_embeds = temp_output[0]
sequence_output = text_embeds
pooled_output = self.pooler(sequence_output)
return pooled_output, sequence_output
elif mode == 'visual':
''' LXMERT visual branch (no language processing during navigation) '''
text_embeds = input_ids
text_mask = extended_attention_mask
img_embedding_output = self.vision_encoder(img_feats)
img_seq_len = img_feats.shape[1]
batch_size = text_embeds.size(0)
img_seq_mask = vis_mask
extended_img_mask = img_seq_mask.unsqueeze(1).unsqueeze(2)
extended_img_mask = extended_img_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_img_mask = (1.0 - extended_img_mask) * -10000.0
img_mask = extended_img_mask
lang_output = text_embeds
visn_output = img_embedding_output
for tdx, layer_module in enumerate(self.addlayer):
lang_output, visn_output, language_attention_scores, visual_attention_scores = layer_module(lang_output, text_mask, visn_output, img_mask, tdx)
sequence_output = lang_output
pooled_output = self.pooler(sequence_output)
language_state_scores = language_attention_scores.mean(dim=1)
visual_action_scores = visual_attention_scores.mean(dim=1)
# weighted_feat
language_attention_probs = nn.Softmax(dim=-1)(language_state_scores.clone()).unsqueeze(-1)
visual_attention_probs = nn.Softmax(dim=-1)(visual_action_scores.clone()).unsqueeze(-1)
attended_language = (language_attention_probs * text_embeds[:, 1:, :]).sum(1)
attended_visual = (visual_attention_probs * img_embedding_output).sum(1)
return pooled_output, visual_action_scores, attended_language, attended_visual