Compare commits
3 Commits
2a561bcf01
...
8b5a7438a0
| Author | SHA1 | Date | |
|---|---|---|---|
| 8b5a7438a0 | |||
| 59dfbf9c30 | |||
| 287a35965e |
@ -443,9 +443,9 @@ class GMapObjectNavAgent(Seq2SeqAgent):
|
||||
)
|
||||
ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local
|
||||
# objec grounding
|
||||
obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits)
|
||||
# obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits)
|
||||
# print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id'])
|
||||
og_loss += self.criterion(obj_logits, obj_targets)
|
||||
# og_loss += self.criterion(obj_logits, obj_targets)
|
||||
# print(F.cross_entropy(obj_logits, obj_targets, reduction='none'))
|
||||
# print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item())
|
||||
|
||||
@ -532,11 +532,11 @@ class GMapObjectNavAgent(Seq2SeqAgent):
|
||||
|
||||
if train_ml is not None:
|
||||
ml_loss = ml_loss * train_ml / batch_size
|
||||
og_loss = og_loss * train_ml / batch_size
|
||||
# og_loss = og_loss * train_ml / batch_size
|
||||
self.loss += ml_loss
|
||||
self.loss += og_loss
|
||||
# self.loss += og_loss
|
||||
self.logs['IL_loss'].append(ml_loss.item())
|
||||
self.logs['OG_loss'].append(og_loss.item())
|
||||
# self.logs['OG_loss'].append(og_loss.item())
|
||||
|
||||
'''
|
||||
print("TRAJ:")
|
||||
|
||||
@ -8,12 +8,17 @@ import random
|
||||
import networkx as nx
|
||||
from collections import defaultdict
|
||||
import copy
|
||||
from glob import glob
|
||||
|
||||
|
||||
import MatterSim
|
||||
|
||||
from utils.data import load_nav_graphs, new_simulator
|
||||
from utils.data import angle_feature, get_all_point_angle_feature
|
||||
|
||||
with open('./node_region.json') as fp:
|
||||
node_region = json.load(fp)
|
||||
|
||||
|
||||
class EnvBatch(object):
|
||||
''' A simple wrapper for a batch of MatterSim environments,
|
||||
@ -360,6 +365,9 @@ class ReverieObjectNavBatch(object):
|
||||
path = sum(pred_path, [])
|
||||
assert gt_path[0] == path[0], 'Result trajectories should include the start position'
|
||||
|
||||
pred_stop_region = node_region[scan][path[-1]]
|
||||
gt_stop_region = node_region[scan][gt_path[-1]]
|
||||
|
||||
scores['action_steps'] = len(pred_path) - 1
|
||||
scores['trajectory_steps'] = len(path) - 1
|
||||
scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])])
|
||||
@ -369,15 +377,29 @@ class ReverieObjectNavBatch(object):
|
||||
goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))])
|
||||
assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid))
|
||||
|
||||
scores['found_success'] = float(pred_found == gt_found)
|
||||
|
||||
scores['success'] = float(path[-1] in goal_viewpoints)
|
||||
scores['room_success'] = float(pred_stop_region == gt_stop_region)
|
||||
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
|
||||
'''
|
||||
if scores['success'] == 1.0:
|
||||
scores['found_success'] = float(pred_found == gt_found)
|
||||
else:
|
||||
scores['found_success'] = 0.0
|
||||
'''
|
||||
|
||||
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
|
||||
|
||||
|
||||
scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
|
||||
scores['sspl'] = scores['spl'] * scores['found_success']
|
||||
scores['sspl_1'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
|
||||
scores['sspl_2'] = scores['room_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
|
||||
scores['sspl_3'] = scores['oracle_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
|
||||
|
||||
scores['ss_1'] = scores['success'] * scores['found_success']
|
||||
scores['ss_2'] = scores['room_success'] * scores['found_success']
|
||||
scores['ss_3'] = scores['oracle_success'] * scores['found_success']
|
||||
# scores['sspl'] = scores['spl'] * scores['found_success']
|
||||
|
||||
scores['rgs'] = str(pred_objid) == str(gt_objid)
|
||||
scores['rgspl'] = scores['rgs'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
|
||||
@ -419,8 +441,14 @@ class ReverieObjectNavBatch(object):
|
||||
'spl': np.mean(metrics['spl']) * 100,
|
||||
'rgs': np.mean(metrics['rgs']) * 100,
|
||||
'rgspl': np.mean(metrics['rgspl']) * 100,
|
||||
'sspl': np.mean(metrics['sspl']) * 100,
|
||||
'sspl_1': np.mean(metrics['sspl_1']) * 100,
|
||||
'sspl_2': np.mean(metrics['sspl_2']) * 100,
|
||||
'sspl_3': np.mean(metrics['sspl_3']) * 100,
|
||||
'ss_1': np.mean(metrics['ss_1']) * 100,
|
||||
'ss_2': np.mean(metrics['ss_2']) * 100,
|
||||
'ss_3': np.mean(metrics['ss_3']) * 100,
|
||||
'found_sr': np.mean(metrics['found_success']) * 100,
|
||||
'room_sr': np.mean(metrics['room_success']) * 100,
|
||||
}
|
||||
return avg_metrics, metrics
|
||||
|
||||
|
||||
@ -138,7 +138,7 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
|
||||
'\nListener training starts, start iteration: %s' % str(start_iter), record_file
|
||||
)
|
||||
|
||||
best_val = {'val_unseen': {"spl": 0., "sr": 0., "state":"", "sspl": 0., 'found_sr': 0.}}
|
||||
best_val = {'val_unseen': {"spl": 0., "sr": 0., "room_sr": 0., "state":"", "sspl": 0., 'found_sr': 0.}}
|
||||
|
||||
for idx in range(start_iter, start_iter+args.iters, args.log_every):
|
||||
listner.logs = defaultdict(list)
|
||||
@ -203,11 +203,12 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
|
||||
|
||||
# select model by spl
|
||||
if env_name in best_val:
|
||||
if score_summary['sspl'] >= best_val[env_name]['sspl']:
|
||||
if score_summary['room_sr'] >= best_val[env_name]['room_sr']:
|
||||
best_val[env_name]['spl'] = score_summary['spl']
|
||||
best_val[env_name]['sspl'] = score_summary['sspl']
|
||||
best_val[env_name]['sr'] = score_summary['sr']
|
||||
best_val[env_name]['found_sr'] = score_summary['found_sr']
|
||||
best_val[env_name]['room_sr'] = score_summary['room_sr']
|
||||
best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str)
|
||||
listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name)))
|
||||
|
||||
|
||||
Loading…
Reference in New Issue
Block a user