Compare commits
No commits in common. "main" and "show-prob" have entirely different histories.
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -416,14 +416,13 @@ class GMapObjectNavAgent(Seq2SeqAgent):
|
|||||||
else:
|
else:
|
||||||
og = None
|
og = None
|
||||||
|
|
||||||
|
|
||||||
# 如果有找到,og 會是 object id
|
# 如果有找到,og 會是 object id
|
||||||
# 如果是 not found,og 會是 -1
|
# 如果是 not found,og 會是 -1
|
||||||
# 如果這個 viewpoint 看不到物件,og 會是 None
|
# 如果這個 viewpoint 看不到物件,og 會是 None
|
||||||
gmap.node_stop_scores[i_vp] = {
|
gmap.node_stop_scores[i_vp] = {
|
||||||
'stop': nav_probs[i, 0].data.item(),
|
'stop': nav_probs[i, 0].data.item(),
|
||||||
'og': og,
|
'og': og,
|
||||||
'og_details': {'objids': i_objids, 'logits': torch.cat([i_obj_logits[:len(i_objids)], i_obj_logits[[-1]] ], dim=0)},
|
'og_details': {'objids': i_objids, 'logits': i_obj_logits[:len(i_objids)]},
|
||||||
}
|
}
|
||||||
|
|
||||||
if train_ml is not None:
|
if train_ml is not None:
|
||||||
@ -443,9 +442,9 @@ class GMapObjectNavAgent(Seq2SeqAgent):
|
|||||||
)
|
)
|
||||||
ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local
|
ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local
|
||||||
# objec grounding
|
# objec grounding
|
||||||
# obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits)
|
obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits)
|
||||||
# print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id'])
|
# print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id'])
|
||||||
# og_loss += self.criterion(obj_logits, obj_targets)
|
og_loss += self.criterion(obj_logits, obj_targets)
|
||||||
# print(F.cross_entropy(obj_logits, obj_targets, reduction='none'))
|
# print(F.cross_entropy(obj_logits, obj_targets, reduction='none'))
|
||||||
# print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item())
|
# print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item())
|
||||||
|
|
||||||
@ -532,11 +531,11 @@ class GMapObjectNavAgent(Seq2SeqAgent):
|
|||||||
|
|
||||||
if train_ml is not None:
|
if train_ml is not None:
|
||||||
ml_loss = ml_loss * train_ml / batch_size
|
ml_loss = ml_loss * train_ml / batch_size
|
||||||
# og_loss = og_loss * train_ml / batch_size
|
og_loss = og_loss * train_ml / batch_size
|
||||||
self.loss += ml_loss
|
self.loss += ml_loss
|
||||||
# self.loss += og_loss
|
self.loss += og_loss
|
||||||
self.logs['IL_loss'].append(ml_loss.item())
|
self.logs['IL_loss'].append(ml_loss.item())
|
||||||
# self.logs['OG_loss'].append(og_loss.item())
|
self.logs['OG_loss'].append(og_loss.item())
|
||||||
|
|
||||||
'''
|
'''
|
||||||
print("TRAJ:")
|
print("TRAJ:")
|
||||||
|
|||||||
@ -87,7 +87,6 @@ def construct_instrs(anno_dir, dataset, splits, tokenizer, max_instr_len=512):
|
|||||||
new_item['objId'] = None
|
new_item['objId'] = None
|
||||||
new_item['instruction'] = instr
|
new_item['instruction'] = instr
|
||||||
new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len]
|
new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len]
|
||||||
new_item['path'] = item['path'][j]
|
|
||||||
new_item['found'] = item['found'][j]
|
new_item['found'] = item['found'][j]
|
||||||
del new_item['instructions']
|
del new_item['instructions']
|
||||||
del new_item['instr_encodings']
|
del new_item['instr_encodings']
|
||||||
|
|||||||
@ -8,22 +8,12 @@ import random
|
|||||||
import networkx as nx
|
import networkx as nx
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
import copy
|
import copy
|
||||||
from glob import glob
|
|
||||||
|
|
||||||
|
|
||||||
import MatterSim
|
import MatterSim
|
||||||
|
|
||||||
from utils.data import load_nav_graphs, new_simulator
|
from utils.data import load_nav_graphs, new_simulator
|
||||||
from utils.data import angle_feature, get_all_point_angle_feature
|
from utils.data import angle_feature, get_all_point_angle_feature
|
||||||
|
|
||||||
with open('./node_region.json') as fp:
|
|
||||||
node_region = json.load(fp)
|
|
||||||
|
|
||||||
with open('region2objs.json') as fp:
|
|
||||||
region2objs = json.load(fp)
|
|
||||||
|
|
||||||
with open('vp2objs.json') as fp:
|
|
||||||
vp2objs = json.load(fp)
|
|
||||||
|
|
||||||
class EnvBatch(object):
|
class EnvBatch(object):
|
||||||
''' A simple wrapper for a batch of MatterSim environments,
|
''' A simple wrapper for a batch of MatterSim environments,
|
||||||
@ -370,10 +360,6 @@ class ReverieObjectNavBatch(object):
|
|||||||
path = sum(pred_path, [])
|
path = sum(pred_path, [])
|
||||||
assert gt_path[0] == path[0], 'Result trajectories should include the start position'
|
assert gt_path[0] == path[0], 'Result trajectories should include the start position'
|
||||||
|
|
||||||
pred_stop_region = node_region[scan][path[-1]]
|
|
||||||
gt_stop_region = node_region[scan][gt_path[-1]]
|
|
||||||
|
|
||||||
|
|
||||||
scores['action_steps'] = len(pred_path) - 1
|
scores['action_steps'] = len(pred_path) - 1
|
||||||
scores['trajectory_steps'] = len(path) - 1
|
scores['trajectory_steps'] = len(path) - 1
|
||||||
scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])])
|
scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])])
|
||||||
@ -383,98 +369,10 @@ class ReverieObjectNavBatch(object):
|
|||||||
goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))])
|
goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))])
|
||||||
assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid))
|
assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid))
|
||||||
|
|
||||||
scores['found_success'] = float(pred_found == gt_found)
|
|
||||||
|
|
||||||
scores['success'] = float(path[-1] in goal_viewpoints)
|
scores['success'] = float(path[-1] in goal_viewpoints)
|
||||||
scores['room_success'] = float(pred_stop_region == gt_stop_region)
|
|
||||||
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
|
|
||||||
|
|
||||||
gt_room_start_vp = None
|
|
||||||
gt_back_path = []
|
|
||||||
gt_front_path = []
|
|
||||||
for vp in gt_path[::-1]:
|
|
||||||
if node_region[scan][vp] == gt_stop_region and gt_front_path == []:
|
|
||||||
gt_back_path.append(vp)
|
|
||||||
gt_room_start_vp = vp
|
|
||||||
else:
|
|
||||||
gt_front_path.append(vp)
|
|
||||||
|
|
||||||
gt_front_path = gt_front_path[::-1]
|
|
||||||
gt_back_path = gt_back_path[::-1]
|
|
||||||
|
|
||||||
assert (gt_front_path + gt_back_path) == gt_path, "Front path & Back path error"
|
|
||||||
|
|
||||||
gt_front_path += [gt_room_start_vp]
|
|
||||||
|
|
||||||
'''
|
|
||||||
if scores['success'] == 1.0:
|
|
||||||
scores['found_success'] = float(pred_found == gt_found)
|
scores['found_success'] = float(pred_found == gt_found)
|
||||||
else:
|
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
|
||||||
scores['found_success'] = 0.0
|
|
||||||
'''
|
|
||||||
gt_reach_length = np.sum([shortest_distances[a][b] for a, b in zip(gt_front_path[:-1], gt_front_path[1:])])
|
|
||||||
gt_explore_length = np.sum([shortest_distances[a][b] for a, b in zip(gt_back_path[:-1], gt_back_path[1:])])
|
|
||||||
|
|
||||||
if scores['room_success'] != 0.0:
|
|
||||||
# corse-grained
|
|
||||||
|
|
||||||
# get the reach_path & explore_path
|
|
||||||
room_start_vp = None
|
|
||||||
back_path = []
|
|
||||||
front_path = []
|
|
||||||
for vp in path[::-1]:
|
|
||||||
if node_region[scan][vp] == gt_stop_region and front_path == []:
|
|
||||||
back_path.append(vp)
|
|
||||||
room_start_vp = vp
|
|
||||||
else:
|
|
||||||
front_path.append(vp)
|
|
||||||
|
|
||||||
front_path = front_path[::-1]
|
|
||||||
back_path = back_path[::-1]
|
|
||||||
assert (front_path + back_path) == path, "Front path & Back path error"
|
|
||||||
|
|
||||||
# front_path = ... room_start_vp
|
|
||||||
# back_path = room_start_vp ...
|
|
||||||
front_path += [room_start_vp]
|
|
||||||
|
|
||||||
reach_length = np.sum([shortest_distances[a][b] for a, b in zip(front_path[:-1], front_path[1:])]) if len(front_path) != 1 else 0.01
|
|
||||||
explore_length = np.sum([shortest_distances[a][b] for a, b in zip(back_path[:-1], back_path[1:])]) if len(back_path) != 1 else 0.01
|
|
||||||
|
|
||||||
|
|
||||||
scores['room_spl'] = scores['room_success'] * gt_reach_length / max(reach_length, gt_reach_length, 0.01)
|
|
||||||
if scores['found_success'] != 0.0:
|
|
||||||
# fine-grained score
|
|
||||||
# p is converage rate
|
|
||||||
if gt_found:
|
|
||||||
p = 1.0
|
|
||||||
else:
|
|
||||||
explore_objs = set()
|
|
||||||
for vp in back_path:
|
|
||||||
explore_objs.update(vp2objs[vp])
|
|
||||||
p = len(explore_objs) / len(region2objs[scan][gt_stop_region])
|
|
||||||
scores['coverage_rate'] = p
|
|
||||||
scores['explore_spl'] = scores['room_success'] * scores['found_success'] * gt_explore_length / max(gt_explore_length, explore_length, 0.01) * p
|
|
||||||
else:
|
|
||||||
scores['coverage_rate'] = 0
|
|
||||||
scores['explore_spl'] = 0
|
|
||||||
else:
|
|
||||||
scores['room_spl'] = 0.0
|
|
||||||
scores['coverage_rate'] = 0
|
|
||||||
scores['explore_spl'] = 0
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
|
scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
|
||||||
'''
|
|
||||||
scores['sspl_1'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
|
|
||||||
scores['sspl_2'] = scores['room_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
|
|
||||||
scores['sspl_3'] = scores['oracle_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
|
|
||||||
|
|
||||||
scores['ss_1'] = scores['success'] * scores['found_success']
|
|
||||||
scores['ss_2'] = scores['room_success'] * scores['found_success']
|
|
||||||
scores['ss_3'] = scores['oracle_success'] * scores['found_success']
|
|
||||||
'''
|
|
||||||
scores['sspl'] = scores['spl'] * scores['found_success']
|
scores['sspl'] = scores['spl'] * scores['found_success']
|
||||||
|
|
||||||
scores['rgs'] = str(pred_objid) == str(gt_objid)
|
scores['rgs'] = str(pred_objid) == str(gt_objid)
|
||||||
@ -487,7 +385,6 @@ class ReverieObjectNavBatch(object):
|
|||||||
print('eval %d predictions' % (len(preds)))
|
print('eval %d predictions' % (len(preds)))
|
||||||
print(preds[0])
|
print(preds[0])
|
||||||
|
|
||||||
|
|
||||||
metrics = defaultdict(list)
|
metrics = defaultdict(list)
|
||||||
for item in preds:
|
for item in preds:
|
||||||
instr_id = item['instr_id']
|
instr_id = item['instr_id']
|
||||||
@ -496,14 +393,7 @@ class ReverieObjectNavBatch(object):
|
|||||||
scan, gt_traj, gt_objid = self.gt_trajs[instr_id]
|
scan, gt_traj, gt_objid = self.gt_trajs[instr_id]
|
||||||
pred_found = item['found']
|
pred_found = item['found']
|
||||||
gt_found = item['gt_found']
|
gt_found = item['gt_found']
|
||||||
|
|
||||||
|
|
||||||
traj_scores = self._eval_item(scan, traj, pred_objid, gt_traj, gt_objid, pred_found, gt_found)
|
traj_scores = self._eval_item(scan, traj, pred_objid, gt_traj, gt_objid, pred_found, gt_found)
|
||||||
|
|
||||||
# record "success" in the result file
|
|
||||||
# let the visualization tool can get the success status
|
|
||||||
item['success'] = traj_scores['success']
|
|
||||||
|
|
||||||
for k, v in traj_scores.items():
|
for k, v in traj_scores.items():
|
||||||
metrics[k].append(v)
|
metrics[k].append(v)
|
||||||
metrics['instr_id'].append(instr_id)
|
metrics['instr_id'].append(instr_id)
|
||||||
@ -515,15 +405,10 @@ class ReverieObjectNavBatch(object):
|
|||||||
'sr': np.mean(metrics['success']) * 100,
|
'sr': np.mean(metrics['success']) * 100,
|
||||||
'oracle_sr': np.mean(metrics['oracle_success']) * 100,
|
'oracle_sr': np.mean(metrics['oracle_success']) * 100,
|
||||||
'spl': np.mean(metrics['spl']) * 100,
|
'spl': np.mean(metrics['spl']) * 100,
|
||||||
'sspl': np.mean(metrics['sspl']) * 100,
|
|
||||||
'rgs': np.mean(metrics['rgs']) * 100,
|
'rgs': np.mean(metrics['rgs']) * 100,
|
||||||
'rgspl': np.mean(metrics['rgspl']) * 100,
|
'rgspl': np.mean(metrics['rgspl']) * 100,
|
||||||
|
'sspl': np.mean(metrics['sspl']) * 100,
|
||||||
'found_sr': np.mean(metrics['found_success']) * 100,
|
'found_sr': np.mean(metrics['found_success']) * 100,
|
||||||
'room_sr': np.mean(metrics['room_success']) * 100,
|
|
||||||
'room_spl': np.mean(metrics['room_spl']) * 100,
|
|
||||||
'coverage_rate': np.mean(metrics['coverage_rate']) * 100,
|
|
||||||
'explore_spl': np.mean(metrics['explore_spl']) * 100,
|
|
||||||
}
|
}
|
||||||
return avg_metrics, metrics
|
return avg_metrics, metrics
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -138,7 +138,7 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
|
|||||||
'\nListener training starts, start iteration: %s' % str(start_iter), record_file
|
'\nListener training starts, start iteration: %s' % str(start_iter), record_file
|
||||||
)
|
)
|
||||||
|
|
||||||
best_val = {'val_unseen': {"spl": 0., "sr": 0., "room_sr": 0., "state":"", "sspl": 0., 'found_sr': 0., 'explore_spl': 0.}}
|
best_val = {'val_unseen': {"spl": 0., "sr": 0., "state":"", "sspl": 0., 'found_sr': 0.}}
|
||||||
|
|
||||||
for idx in range(start_iter, start_iter+args.iters, args.log_every):
|
for idx in range(start_iter, start_iter+args.iters, args.log_every):
|
||||||
listner.logs = defaultdict(list)
|
listner.logs = defaultdict(list)
|
||||||
@ -203,15 +203,11 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
|
|||||||
|
|
||||||
# select model by spl
|
# select model by spl
|
||||||
if env_name in best_val:
|
if env_name in best_val:
|
||||||
if score_summary['explore_spl'] >= best_val[env_name]['explore_spl']:
|
if score_summary['sspl'] >= best_val[env_name]['sspl']:
|
||||||
best_val[env_name]['spl'] = score_summary['spl']
|
best_val[env_name]['spl'] = score_summary['spl']
|
||||||
best_val[env_name]['sspl'] = score_summary['sspl']
|
best_val[env_name]['sspl'] = score_summary['sspl']
|
||||||
best_val[env_name]['explore_spl'] = score_summary['explore_spl']
|
|
||||||
best_val[env_name]['coverage_rate'] = score_summary['coverage_rate']
|
|
||||||
best_val[env_name]['room_spl'] = score_summary['room_spl']
|
|
||||||
best_val[env_name]['sr'] = score_summary['sr']
|
best_val[env_name]['sr'] = score_summary['sr']
|
||||||
best_val[env_name]['found_sr'] = score_summary['found_sr']
|
best_val[env_name]['found_sr'] = score_summary['found_sr']
|
||||||
best_val[env_name]['room_sr'] = score_summary['room_sr']
|
|
||||||
best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str)
|
best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str)
|
||||||
listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name)))
|
listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name)))
|
||||||
|
|
||||||
|
|||||||
@ -71,7 +71,7 @@ def parse_args():
|
|||||||
parser.add_argument('--test', action='store_true', default=False)
|
parser.add_argument('--test', action='store_true', default=False)
|
||||||
parser.add_argument("--submit", action='store_true', default=False)
|
parser.add_argument("--submit", action='store_true', default=False)
|
||||||
parser.add_argument('--no_backtrack', action='store_true', default=False)
|
parser.add_argument('--no_backtrack', action='store_true', default=False)
|
||||||
parser.add_argument('--detailed_output', action='store_true', default=True)
|
parser.add_argument('--detailed_output', action='store_true', default=False)
|
||||||
|
|
||||||
# Training Configurations
|
# Training Configurations
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
|||||||
@ -10,7 +10,7 @@ obj_ft_dim=768
|
|||||||
ngpus=1
|
ngpus=1
|
||||||
seed=0
|
seed=0
|
||||||
|
|
||||||
name=${train_alg}-${features}-new-reverie-all
|
name=${train_alg}-${features}
|
||||||
name=${name}-seed.${seed} #-${ngpus}gpus
|
name=${name}-seed.${seed} #-${ngpus}gpus
|
||||||
|
|
||||||
outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name}
|
outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name}
|
||||||
@ -59,14 +59,13 @@ flag="--root_dir ${DATA_ROOT}
|
|||||||
--gamma 0."
|
--gamma 0."
|
||||||
|
|
||||||
# train
|
# train
|
||||||
CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
|
CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \
|
||||||
--tokenizer bert \
|
--tokenizer bert \
|
||||||
--bert_ckpt_file '../datasets/REVERIE/exprs_map/pretrain/cmt-vitbase-mlm.mrc.sap.og-init.lxmert-aug.speaker/ckpts/model_step_100000.pt' \
|
--bert_ckpt_file 'put the pretrained model (see pretrain_src) here' \
|
||||||
--eval_first
|
--eval_first
|
||||||
|
|
||||||
# test
|
# test
|
||||||
echo /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen
|
CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \
|
||||||
CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
|
|
||||||
--tokenizer bert \
|
--tokenizer bert \
|
||||||
--resume_file /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen \
|
--resume_file ../datasets/REVERIE/trained_models/best_val_unseen \
|
||||||
--test --submit
|
--test --submit
|
||||||
File diff suppressed because one or more lines are too long
Loading…
Reference in New Issue
Block a user