Compare commits

..

No commits in common. "main" and "show-prob" have entirely different histories.

9 changed files with 17 additions and 142 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -416,14 +416,13 @@ class GMapObjectNavAgent(Seq2SeqAgent):
else: else:
og = None og = None
# 如果有找到og 會是 object id # 如果有找到og 會是 object id
# 如果是 not foundog 會是 -1 # 如果是 not foundog 會是 -1
# 如果這個 viewpoint 看不到物件og 會是 None # 如果這個 viewpoint 看不到物件og 會是 None
gmap.node_stop_scores[i_vp] = { gmap.node_stop_scores[i_vp] = {
'stop': nav_probs[i, 0].data.item(), 'stop': nav_probs[i, 0].data.item(),
'og': og, 'og': og,
'og_details': {'objids': i_objids, 'logits': torch.cat([i_obj_logits[:len(i_objids)], i_obj_logits[[-1]] ], dim=0)}, 'og_details': {'objids': i_objids, 'logits': i_obj_logits[:len(i_objids)]},
} }
if train_ml is not None: if train_ml is not None:
@ -443,9 +442,9 @@ class GMapObjectNavAgent(Seq2SeqAgent):
) )
ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local
# objec grounding # objec grounding
# obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits) obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits)
# print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id']) # print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id'])
# og_loss += self.criterion(obj_logits, obj_targets) og_loss += self.criterion(obj_logits, obj_targets)
# print(F.cross_entropy(obj_logits, obj_targets, reduction='none')) # print(F.cross_entropy(obj_logits, obj_targets, reduction='none'))
# print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item()) # print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item())
@ -532,11 +531,11 @@ class GMapObjectNavAgent(Seq2SeqAgent):
if train_ml is not None: if train_ml is not None:
ml_loss = ml_loss * train_ml / batch_size ml_loss = ml_loss * train_ml / batch_size
# og_loss = og_loss * train_ml / batch_size og_loss = og_loss * train_ml / batch_size
self.loss += ml_loss self.loss += ml_loss
# self.loss += og_loss self.loss += og_loss
self.logs['IL_loss'].append(ml_loss.item()) self.logs['IL_loss'].append(ml_loss.item())
# self.logs['OG_loss'].append(og_loss.item()) self.logs['OG_loss'].append(og_loss.item())
''' '''
print("TRAJ:") print("TRAJ:")

View File

@ -87,7 +87,6 @@ def construct_instrs(anno_dir, dataset, splits, tokenizer, max_instr_len=512):
new_item['objId'] = None new_item['objId'] = None
new_item['instruction'] = instr new_item['instruction'] = instr
new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len] new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len]
new_item['path'] = item['path'][j]
new_item['found'] = item['found'][j] new_item['found'] = item['found'][j]
del new_item['instructions'] del new_item['instructions']
del new_item['instr_encodings'] del new_item['instr_encodings']

View File

@ -8,22 +8,12 @@ import random
import networkx as nx import networkx as nx
from collections import defaultdict from collections import defaultdict
import copy import copy
from glob import glob
import MatterSim import MatterSim
from utils.data import load_nav_graphs, new_simulator from utils.data import load_nav_graphs, new_simulator
from utils.data import angle_feature, get_all_point_angle_feature from utils.data import angle_feature, get_all_point_angle_feature
with open('./node_region.json') as fp:
node_region = json.load(fp)
with open('region2objs.json') as fp:
region2objs = json.load(fp)
with open('vp2objs.json') as fp:
vp2objs = json.load(fp)
class EnvBatch(object): class EnvBatch(object):
''' A simple wrapper for a batch of MatterSim environments, ''' A simple wrapper for a batch of MatterSim environments,
@ -370,10 +360,6 @@ class ReverieObjectNavBatch(object):
path = sum(pred_path, []) path = sum(pred_path, [])
assert gt_path[0] == path[0], 'Result trajectories should include the start position' assert gt_path[0] == path[0], 'Result trajectories should include the start position'
pred_stop_region = node_region[scan][path[-1]]
gt_stop_region = node_region[scan][gt_path[-1]]
scores['action_steps'] = len(pred_path) - 1 scores['action_steps'] = len(pred_path) - 1
scores['trajectory_steps'] = len(path) - 1 scores['trajectory_steps'] = len(path) - 1
scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])]) scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])])
@ -383,98 +369,10 @@ class ReverieObjectNavBatch(object):
goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))]) goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))])
assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid)) assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid))
scores['found_success'] = float(pred_found == gt_found)
scores['success'] = float(path[-1] in goal_viewpoints) scores['success'] = float(path[-1] in goal_viewpoints)
scores['room_success'] = float(pred_stop_region == gt_stop_region)
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
gt_room_start_vp = None
gt_back_path = []
gt_front_path = []
for vp in gt_path[::-1]:
if node_region[scan][vp] == gt_stop_region and gt_front_path == []:
gt_back_path.append(vp)
gt_room_start_vp = vp
else:
gt_front_path.append(vp)
gt_front_path = gt_front_path[::-1]
gt_back_path = gt_back_path[::-1]
assert (gt_front_path + gt_back_path) == gt_path, "Front path & Back path error"
gt_front_path += [gt_room_start_vp]
'''
if scores['success'] == 1.0:
scores['found_success'] = float(pred_found == gt_found) scores['found_success'] = float(pred_found == gt_found)
else: scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
scores['found_success'] = 0.0
'''
gt_reach_length = np.sum([shortest_distances[a][b] for a, b in zip(gt_front_path[:-1], gt_front_path[1:])])
gt_explore_length = np.sum([shortest_distances[a][b] for a, b in zip(gt_back_path[:-1], gt_back_path[1:])])
if scores['room_success'] != 0.0:
# corse-grained
# get the reach_path & explore_path
room_start_vp = None
back_path = []
front_path = []
for vp in path[::-1]:
if node_region[scan][vp] == gt_stop_region and front_path == []:
back_path.append(vp)
room_start_vp = vp
else:
front_path.append(vp)
front_path = front_path[::-1]
back_path = back_path[::-1]
assert (front_path + back_path) == path, "Front path & Back path error"
# front_path = ... room_start_vp
# back_path = room_start_vp ...
front_path += [room_start_vp]
reach_length = np.sum([shortest_distances[a][b] for a, b in zip(front_path[:-1], front_path[1:])]) if len(front_path) != 1 else 0.01
explore_length = np.sum([shortest_distances[a][b] for a, b in zip(back_path[:-1], back_path[1:])]) if len(back_path) != 1 else 0.01
scores['room_spl'] = scores['room_success'] * gt_reach_length / max(reach_length, gt_reach_length, 0.01)
if scores['found_success'] != 0.0:
# fine-grained score
# p is converage rate
if gt_found:
p = 1.0
else:
explore_objs = set()
for vp in back_path:
explore_objs.update(vp2objs[vp])
p = len(explore_objs) / len(region2objs[scan][gt_stop_region])
scores['coverage_rate'] = p
scores['explore_spl'] = scores['room_success'] * scores['found_success'] * gt_explore_length / max(gt_explore_length, explore_length, 0.01) * p
else:
scores['coverage_rate'] = 0
scores['explore_spl'] = 0
else:
scores['room_spl'] = 0.0
scores['coverage_rate'] = 0
scores['explore_spl'] = 0
scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
'''
scores['sspl_1'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['sspl_2'] = scores['room_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['sspl_3'] = scores['oracle_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['ss_1'] = scores['success'] * scores['found_success']
scores['ss_2'] = scores['room_success'] * scores['found_success']
scores['ss_3'] = scores['oracle_success'] * scores['found_success']
'''
scores['sspl'] = scores['spl'] * scores['found_success'] scores['sspl'] = scores['spl'] * scores['found_success']
scores['rgs'] = str(pred_objid) == str(gt_objid) scores['rgs'] = str(pred_objid) == str(gt_objid)
@ -487,7 +385,6 @@ class ReverieObjectNavBatch(object):
print('eval %d predictions' % (len(preds))) print('eval %d predictions' % (len(preds)))
print(preds[0]) print(preds[0])
metrics = defaultdict(list) metrics = defaultdict(list)
for item in preds: for item in preds:
instr_id = item['instr_id'] instr_id = item['instr_id']
@ -496,14 +393,7 @@ class ReverieObjectNavBatch(object):
scan, gt_traj, gt_objid = self.gt_trajs[instr_id] scan, gt_traj, gt_objid = self.gt_trajs[instr_id]
pred_found = item['found'] pred_found = item['found']
gt_found = item['gt_found'] gt_found = item['gt_found']
traj_scores = self._eval_item(scan, traj, pred_objid, gt_traj, gt_objid, pred_found, gt_found) traj_scores = self._eval_item(scan, traj, pred_objid, gt_traj, gt_objid, pred_found, gt_found)
# record "success" in the result file
# let the visualization tool can get the success status
item['success'] = traj_scores['success']
for k, v in traj_scores.items(): for k, v in traj_scores.items():
metrics[k].append(v) metrics[k].append(v)
metrics['instr_id'].append(instr_id) metrics['instr_id'].append(instr_id)
@ -515,15 +405,10 @@ class ReverieObjectNavBatch(object):
'sr': np.mean(metrics['success']) * 100, 'sr': np.mean(metrics['success']) * 100,
'oracle_sr': np.mean(metrics['oracle_success']) * 100, 'oracle_sr': np.mean(metrics['oracle_success']) * 100,
'spl': np.mean(metrics['spl']) * 100, 'spl': np.mean(metrics['spl']) * 100,
'sspl': np.mean(metrics['sspl']) * 100,
'rgs': np.mean(metrics['rgs']) * 100, 'rgs': np.mean(metrics['rgs']) * 100,
'rgspl': np.mean(metrics['rgspl']) * 100, 'rgspl': np.mean(metrics['rgspl']) * 100,
'sspl': np.mean(metrics['sspl']) * 100,
'found_sr': np.mean(metrics['found_success']) * 100, 'found_sr': np.mean(metrics['found_success']) * 100,
'room_sr': np.mean(metrics['room_success']) * 100,
'room_spl': np.mean(metrics['room_spl']) * 100,
'coverage_rate': np.mean(metrics['coverage_rate']) * 100,
'explore_spl': np.mean(metrics['explore_spl']) * 100,
} }
return avg_metrics, metrics return avg_metrics, metrics

View File

@ -138,7 +138,7 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
'\nListener training starts, start iteration: %s' % str(start_iter), record_file '\nListener training starts, start iteration: %s' % str(start_iter), record_file
) )
best_val = {'val_unseen': {"spl": 0., "sr": 0., "room_sr": 0., "state":"", "sspl": 0., 'found_sr': 0., 'explore_spl': 0.}} best_val = {'val_unseen': {"spl": 0., "sr": 0., "state":"", "sspl": 0., 'found_sr': 0.}}
for idx in range(start_iter, start_iter+args.iters, args.log_every): for idx in range(start_iter, start_iter+args.iters, args.log_every):
listner.logs = defaultdict(list) listner.logs = defaultdict(list)
@ -203,15 +203,11 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
# select model by spl # select model by spl
if env_name in best_val: if env_name in best_val:
if score_summary['explore_spl'] >= best_val[env_name]['explore_spl']: if score_summary['sspl'] >= best_val[env_name]['sspl']:
best_val[env_name]['spl'] = score_summary['spl'] best_val[env_name]['spl'] = score_summary['spl']
best_val[env_name]['sspl'] = score_summary['sspl'] best_val[env_name]['sspl'] = score_summary['sspl']
best_val[env_name]['explore_spl'] = score_summary['explore_spl']
best_val[env_name]['coverage_rate'] = score_summary['coverage_rate']
best_val[env_name]['room_spl'] = score_summary['room_spl']
best_val[env_name]['sr'] = score_summary['sr'] best_val[env_name]['sr'] = score_summary['sr']
best_val[env_name]['found_sr'] = score_summary['found_sr'] best_val[env_name]['found_sr'] = score_summary['found_sr']
best_val[env_name]['room_sr'] = score_summary['room_sr']
best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str) best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str)
listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name))) listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name)))

View File

@ -71,7 +71,7 @@ def parse_args():
parser.add_argument('--test', action='store_true', default=False) parser.add_argument('--test', action='store_true', default=False)
parser.add_argument("--submit", action='store_true', default=False) parser.add_argument("--submit", action='store_true', default=False)
parser.add_argument('--no_backtrack', action='store_true', default=False) parser.add_argument('--no_backtrack', action='store_true', default=False)
parser.add_argument('--detailed_output', action='store_true', default=True) parser.add_argument('--detailed_output', action='store_true', default=False)
# Training Configurations # Training Configurations
parser.add_argument( parser.add_argument(

View File

@ -10,7 +10,7 @@ obj_ft_dim=768
ngpus=1 ngpus=1
seed=0 seed=0
name=${train_alg}-${features}-new-reverie-all name=${train_alg}-${features}
name=${name}-seed.${seed} #-${ngpus}gpus name=${name}-seed.${seed} #-${ngpus}gpus
outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name} outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name}
@ -59,14 +59,13 @@ flag="--root_dir ${DATA_ROOT}
--gamma 0." --gamma 0."
# train # train
CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \ CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \
--tokenizer bert \ --tokenizer bert \
--bert_ckpt_file '../datasets/REVERIE/exprs_map/pretrain/cmt-vitbase-mlm.mrc.sap.og-init.lxmert-aug.speaker/ckpts/model_step_100000.pt' \ --bert_ckpt_file 'put the pretrained model (see pretrain_src) here' \
--eval_first --eval_first
# test # test
echo /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \
CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
--tokenizer bert \ --tokenizer bert \
--resume_file /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen \ --resume_file ../datasets/REVERIE/trained_models/best_val_unseen \
--test --submit --test --submit

File diff suppressed because one or more lines are too long