Compare commits

..

9 Commits

Author SHA1 Message Date
641b7169b3
fix: evaluation metrics for new reverie (path)
it's a "new" new reverie, I only choose the front path & the back path >
1's instructions.
2024-10-06 18:16:16 +08:00
36dbfed7e1
reverie's pretrain path 2024-09-07 18:15:31 +08:00
bfcb1f49ea
feat: add new metrics for new reverie 2024-09-01 14:13:05 +08:00
8b5a7438a0
fix: use room sr to choose the best model 2024-07-16 13:51:00 +08:00
59dfbf9c30
feat: different SSPL(oracle, room sr) 2024-07-16 13:49:47 +08:00
287a35965e
fix: remove obj loss 2024-07-16 13:49:22 +08:00
2a561bcf01
feat: log "success" in predict file
Why:
In visualization tool, we should check whether the agent arrive the
target viewpoint. We need to calculate the distance between the GT
viewpoint & the predicted viewpoint but it's difficult to calculate the
distance without the simulator (we run the visualization tool on Jupyter
notebook which is not in the docker container so we cannot use the
simulator)

How:
After getting the result which gather from the env. We should run the
eval_metrics() to get the success rate, FOUND score..., etc. So we get
the "success" after eval_metrics() and log it in the predicted file so
that the visualization tool can get the "success" status in the
predicted file.
2024-02-22 22:29:44 +08:00
0135ab3ac8
fix: change the model path 2024-01-22 00:42:40 +08:00
924cfe9b43
feat: show NOT_FOUND prob. in detail informations 2024-01-21 14:48:01 +08:00
9 changed files with 142 additions and 17 deletions

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -416,13 +416,14 @@ class GMapObjectNavAgent(Seq2SeqAgent):
else: else:
og = None og = None
# 如果有找到og 會是 object id # 如果有找到og 會是 object id
# 如果是 not foundog 會是 -1 # 如果是 not foundog 會是 -1
# 如果這個 viewpoint 看不到物件og 會是 None # 如果這個 viewpoint 看不到物件og 會是 None
gmap.node_stop_scores[i_vp] = { gmap.node_stop_scores[i_vp] = {
'stop': nav_probs[i, 0].data.item(), 'stop': nav_probs[i, 0].data.item(),
'og': og, 'og': og,
'og_details': {'objids': i_objids, 'logits': i_obj_logits[:len(i_objids)]}, 'og_details': {'objids': i_objids, 'logits': torch.cat([i_obj_logits[:len(i_objids)], i_obj_logits[[-1]] ], dim=0)},
} }
if train_ml is not None: if train_ml is not None:
@ -442,9 +443,9 @@ class GMapObjectNavAgent(Seq2SeqAgent):
) )
ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local ml_loss += self.criterion(nav_outs['local_logits'], local_nav_targets) # local
# objec grounding # objec grounding
obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits) # obj_targets = self._teacher_object(obs, ended, pano_inputs['view_lens'], obj_logits)
# print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id']) # print(t, obj_targets[6], obj_logits[6], obs[6]['obj_ids'], pano_inputs['view_lens'][i], obs[6]['gt_obj_id'])
og_loss += self.criterion(obj_logits, obj_targets) # og_loss += self.criterion(obj_logits, obj_targets)
# print(F.cross_entropy(obj_logits, obj_targets, reduction='none')) # print(F.cross_entropy(obj_logits, obj_targets, reduction='none'))
# print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item()) # print(t, 'og_loss', og_loss.item(), self.criterion(obj_logits, obj_targets).item())
@ -531,11 +532,11 @@ class GMapObjectNavAgent(Seq2SeqAgent):
if train_ml is not None: if train_ml is not None:
ml_loss = ml_loss * train_ml / batch_size ml_loss = ml_loss * train_ml / batch_size
og_loss = og_loss * train_ml / batch_size # og_loss = og_loss * train_ml / batch_size
self.loss += ml_loss self.loss += ml_loss
self.loss += og_loss # self.loss += og_loss
self.logs['IL_loss'].append(ml_loss.item()) self.logs['IL_loss'].append(ml_loss.item())
self.logs['OG_loss'].append(og_loss.item()) # self.logs['OG_loss'].append(og_loss.item())
''' '''
print("TRAJ:") print("TRAJ:")

View File

@ -87,6 +87,7 @@ def construct_instrs(anno_dir, dataset, splits, tokenizer, max_instr_len=512):
new_item['objId'] = None new_item['objId'] = None
new_item['instruction'] = instr new_item['instruction'] = instr
new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len] new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len]
new_item['path'] = item['path'][j]
new_item['found'] = item['found'][j] new_item['found'] = item['found'][j]
del new_item['instructions'] del new_item['instructions']
del new_item['instr_encodings'] del new_item['instr_encodings']

View File

@ -8,12 +8,22 @@ import random
import networkx as nx import networkx as nx
from collections import defaultdict from collections import defaultdict
import copy import copy
from glob import glob
import MatterSim import MatterSim
from utils.data import load_nav_graphs, new_simulator from utils.data import load_nav_graphs, new_simulator
from utils.data import angle_feature, get_all_point_angle_feature from utils.data import angle_feature, get_all_point_angle_feature
with open('./node_region.json') as fp:
node_region = json.load(fp)
with open('region2objs.json') as fp:
region2objs = json.load(fp)
with open('vp2objs.json') as fp:
vp2objs = json.load(fp)
class EnvBatch(object): class EnvBatch(object):
''' A simple wrapper for a batch of MatterSim environments, ''' A simple wrapper for a batch of MatterSim environments,
@ -360,6 +370,10 @@ class ReverieObjectNavBatch(object):
path = sum(pred_path, []) path = sum(pred_path, [])
assert gt_path[0] == path[0], 'Result trajectories should include the start position' assert gt_path[0] == path[0], 'Result trajectories should include the start position'
pred_stop_region = node_region[scan][path[-1]]
gt_stop_region = node_region[scan][gt_path[-1]]
scores['action_steps'] = len(pred_path) - 1 scores['action_steps'] = len(pred_path) - 1
scores['trajectory_steps'] = len(path) - 1 scores['trajectory_steps'] = len(path) - 1
scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])]) scores['trajectory_lengths'] = np.sum([shortest_distances[a][b] for a, b in zip(path[:-1], path[1:])])
@ -369,10 +383,98 @@ class ReverieObjectNavBatch(object):
goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))]) goal_viewpoints = set(self.obj2vps['%s_%s'%(scan, str(gt_objid))])
assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid)) assert len(goal_viewpoints) > 0, '%s_%s'%(scan, str(gt_objid))
scores['found_success'] = float(pred_found == gt_found)
scores['success'] = float(path[-1] in goal_viewpoints) scores['success'] = float(path[-1] in goal_viewpoints)
scores['found_success'] = float(pred_found == gt_found) scores['room_success'] = float(pred_stop_region == gt_stop_region)
scores['oracle_success'] = float(any(x in goal_viewpoints for x in path)) scores['oracle_success'] = float(any(x in goal_viewpoints for x in path))
gt_room_start_vp = None
gt_back_path = []
gt_front_path = []
for vp in gt_path[::-1]:
if node_region[scan][vp] == gt_stop_region and gt_front_path == []:
gt_back_path.append(vp)
gt_room_start_vp = vp
else:
gt_front_path.append(vp)
gt_front_path = gt_front_path[::-1]
gt_back_path = gt_back_path[::-1]
assert (gt_front_path + gt_back_path) == gt_path, "Front path & Back path error"
gt_front_path += [gt_room_start_vp]
'''
if scores['success'] == 1.0:
scores['found_success'] = float(pred_found == gt_found)
else:
scores['found_success'] = 0.0
'''
gt_reach_length = np.sum([shortest_distances[a][b] for a, b in zip(gt_front_path[:-1], gt_front_path[1:])])
gt_explore_length = np.sum([shortest_distances[a][b] for a, b in zip(gt_back_path[:-1], gt_back_path[1:])])
if scores['room_success'] != 0.0:
# corse-grained
# get the reach_path & explore_path
room_start_vp = None
back_path = []
front_path = []
for vp in path[::-1]:
if node_region[scan][vp] == gt_stop_region and front_path == []:
back_path.append(vp)
room_start_vp = vp
else:
front_path.append(vp)
front_path = front_path[::-1]
back_path = back_path[::-1]
assert (front_path + back_path) == path, "Front path & Back path error"
# front_path = ... room_start_vp
# back_path = room_start_vp ...
front_path += [room_start_vp]
reach_length = np.sum([shortest_distances[a][b] for a, b in zip(front_path[:-1], front_path[1:])]) if len(front_path) != 1 else 0.01
explore_length = np.sum([shortest_distances[a][b] for a, b in zip(back_path[:-1], back_path[1:])]) if len(back_path) != 1 else 0.01
scores['room_spl'] = scores['room_success'] * gt_reach_length / max(reach_length, gt_reach_length, 0.01)
if scores['found_success'] != 0.0:
# fine-grained score
# p is converage rate
if gt_found:
p = 1.0
else:
explore_objs = set()
for vp in back_path:
explore_objs.update(vp2objs[vp])
p = len(explore_objs) / len(region2objs[scan][gt_stop_region])
scores['coverage_rate'] = p
scores['explore_spl'] = scores['room_success'] * scores['found_success'] * gt_explore_length / max(gt_explore_length, explore_length, 0.01) * p
else:
scores['coverage_rate'] = 0
scores['explore_spl'] = 0
else:
scores['room_spl'] = 0.0
scores['coverage_rate'] = 0
scores['explore_spl'] = 0
scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) scores['spl'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01)
'''
scores['sspl_1'] = scores['success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['sspl_2'] = scores['room_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['sspl_3'] = scores['oracle_success'] * gt_lengths / max(scores['trajectory_lengths'], gt_lengths, 0.01) * scores['found_success']
scores['ss_1'] = scores['success'] * scores['found_success']
scores['ss_2'] = scores['room_success'] * scores['found_success']
scores['ss_3'] = scores['oracle_success'] * scores['found_success']
'''
scores['sspl'] = scores['spl'] * scores['found_success'] scores['sspl'] = scores['spl'] * scores['found_success']
scores['rgs'] = str(pred_objid) == str(gt_objid) scores['rgs'] = str(pred_objid) == str(gt_objid)
@ -385,6 +487,7 @@ class ReverieObjectNavBatch(object):
print('eval %d predictions' % (len(preds))) print('eval %d predictions' % (len(preds)))
print(preds[0]) print(preds[0])
metrics = defaultdict(list) metrics = defaultdict(list)
for item in preds: for item in preds:
instr_id = item['instr_id'] instr_id = item['instr_id']
@ -393,7 +496,14 @@ class ReverieObjectNavBatch(object):
scan, gt_traj, gt_objid = self.gt_trajs[instr_id] scan, gt_traj, gt_objid = self.gt_trajs[instr_id]
pred_found = item['found'] pred_found = item['found']
gt_found = item['gt_found'] gt_found = item['gt_found']
traj_scores = self._eval_item(scan, traj, pred_objid, gt_traj, gt_objid, pred_found, gt_found) traj_scores = self._eval_item(scan, traj, pred_objid, gt_traj, gt_objid, pred_found, gt_found)
# record "success" in the result file
# let the visualization tool can get the success status
item['success'] = traj_scores['success']
for k, v in traj_scores.items(): for k, v in traj_scores.items():
metrics[k].append(v) metrics[k].append(v)
metrics['instr_id'].append(instr_id) metrics['instr_id'].append(instr_id)
@ -405,10 +515,15 @@ class ReverieObjectNavBatch(object):
'sr': np.mean(metrics['success']) * 100, 'sr': np.mean(metrics['success']) * 100,
'oracle_sr': np.mean(metrics['oracle_success']) * 100, 'oracle_sr': np.mean(metrics['oracle_success']) * 100,
'spl': np.mean(metrics['spl']) * 100, 'spl': np.mean(metrics['spl']) * 100,
'sspl': np.mean(metrics['sspl']) * 100,
'rgs': np.mean(metrics['rgs']) * 100, 'rgs': np.mean(metrics['rgs']) * 100,
'rgspl': np.mean(metrics['rgspl']) * 100, 'rgspl': np.mean(metrics['rgspl']) * 100,
'sspl': np.mean(metrics['sspl']) * 100,
'found_sr': np.mean(metrics['found_success']) * 100, 'found_sr': np.mean(metrics['found_success']) * 100,
'room_sr': np.mean(metrics['room_success']) * 100,
'room_spl': np.mean(metrics['room_spl']) * 100,
'coverage_rate': np.mean(metrics['coverage_rate']) * 100,
'explore_spl': np.mean(metrics['explore_spl']) * 100,
} }
return avg_metrics, metrics return avg_metrics, metrics

View File

@ -138,7 +138,7 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
'\nListener training starts, start iteration: %s' % str(start_iter), record_file '\nListener training starts, start iteration: %s' % str(start_iter), record_file
) )
best_val = {'val_unseen': {"spl": 0., "sr": 0., "state":"", "sspl": 0., 'found_sr': 0.}} best_val = {'val_unseen': {"spl": 0., "sr": 0., "room_sr": 0., "state":"", "sspl": 0., 'found_sr': 0., 'explore_spl': 0.}}
for idx in range(start_iter, start_iter+args.iters, args.log_every): for idx in range(start_iter, start_iter+args.iters, args.log_every):
listner.logs = defaultdict(list) listner.logs = defaultdict(list)
@ -203,11 +203,15 @@ def train(args, train_env, val_envs, aug_env=None, rank=-1):
# select model by spl # select model by spl
if env_name in best_val: if env_name in best_val:
if score_summary['sspl'] >= best_val[env_name]['sspl']: if score_summary['explore_spl'] >= best_val[env_name]['explore_spl']:
best_val[env_name]['spl'] = score_summary['spl'] best_val[env_name]['spl'] = score_summary['spl']
best_val[env_name]['sspl'] = score_summary['sspl'] best_val[env_name]['sspl'] = score_summary['sspl']
best_val[env_name]['explore_spl'] = score_summary['explore_spl']
best_val[env_name]['coverage_rate'] = score_summary['coverage_rate']
best_val[env_name]['room_spl'] = score_summary['room_spl']
best_val[env_name]['sr'] = score_summary['sr'] best_val[env_name]['sr'] = score_summary['sr']
best_val[env_name]['found_sr'] = score_summary['found_sr'] best_val[env_name]['found_sr'] = score_summary['found_sr']
best_val[env_name]['room_sr'] = score_summary['room_sr']
best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str) best_val[env_name]['state'] = 'Iter %d %s' % (iter, loss_str)
listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name))) listner.save(idx, os.path.join(args.ckpt_dir, "best_%s" % (env_name)))

View File

@ -71,7 +71,7 @@ def parse_args():
parser.add_argument('--test', action='store_true', default=False) parser.add_argument('--test', action='store_true', default=False)
parser.add_argument("--submit", action='store_true', default=False) parser.add_argument("--submit", action='store_true', default=False)
parser.add_argument('--no_backtrack', action='store_true', default=False) parser.add_argument('--no_backtrack', action='store_true', default=False)
parser.add_argument('--detailed_output', action='store_true', default=False) parser.add_argument('--detailed_output', action='store_true', default=True)
# Training Configurations # Training Configurations
parser.add_argument( parser.add_argument(

View File

@ -10,7 +10,7 @@ obj_ft_dim=768
ngpus=1 ngpus=1
seed=0 seed=0
name=${train_alg}-${features} name=${train_alg}-${features}-new-reverie-all
name=${name}-seed.${seed} #-${ngpus}gpus name=${name}-seed.${seed} #-${ngpus}gpus
outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name} outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name}
@ -59,13 +59,14 @@ flag="--root_dir ${DATA_ROOT}
--gamma 0." --gamma 0."
# train # train
CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \ CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
--tokenizer bert \ --tokenizer bert \
--bert_ckpt_file 'put the pretrained model (see pretrain_src) here' \ --bert_ckpt_file '../datasets/REVERIE/exprs_map/pretrain/cmt-vitbase-mlm.mrc.sap.og-init.lxmert-aug.speaker/ckpts/model_step_100000.pt' \
--eval_first --eval_first
# test # test
CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \ echo /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen
CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
--tokenizer bert \ --tokenizer bert \
--resume_file ../datasets/REVERIE/trained_models/best_val_unseen \ --resume_file /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen \
--test --submit --test --submit

1
map_nav_src/vp2objs.json Normal file

File diff suppressed because one or more lines are too long