DATA_ROOT=../datasets train_alg=dagger features=vitbase ft_dim=768 obj_features=vitbase obj_ft_dim=768 ngpus=1 seed=0 name=${train_alg}-${features} name=${name}-seed.${seed} name=${name}-init.aug.45k outdir=${DATA_ROOT}/R2R/exprs_map/finetune/${name} flag="--root_dir ${DATA_ROOT} --dataset r2r --output_dir ${outdir} --world_size ${ngpus} --seed ${seed} --tokenizer bert --enc_full_graph --graph_sprels --fusion dynamic --expert_policy spl --train_alg ${train_alg} --num_l_layers 9 --num_x_layers 4 --num_pano_layers 2 --max_action_len 15 --max_instr_len 200 --batch_size 8 --lr 1e-5 --iters 200000 --log_every 1000 --optim adamW --features ${features} --image_feat_size ${ft_dim} --angle_feat_size 4 --ml_weight 0.2 --feat_dropout 0.4 --dropout 0.5 --gamma 0." # train CUDA_VISIBLE_DEVICES='0' python r2r/main_nav.py $flag \ --tokenizer bert \ --bert_ckpt_file 'put the pretrained model (see pretrain_src) here' \ --eval_first # test CUDA_VISIBLE_DEVICES='0' python r2r/main_nav.py $flag \ --tokenizer bert \ --resume_file ../datasets/R2R/trained_models/best_val_unseen \ --test --submit