adversarial_VLNDUET/map_nav_src/scripts/run_r4r.sh
Shizhe Chen 89214a7c44 init
2022-03-26 20:56:29 +01:00

66 lines
1.3 KiB
Bash

train_alg=dagger
features=vitbase
ft_dim=768
obj_features=vitbase
obj_ft_dim=768
ngpus=1
seed=0
name=${train_alg}-${features}
name=${name}-seed.${seed}
name=${name}-init.aug.45k
outdir=${DATA_ROOT}/R2R/exprs_map/finetune/${name}
flag="--root_dir ${DATA_ROOT}
--dataset r4r
--output_dir ${outdir}
--world_size ${ngpus}
--seed ${seed}
--tokenizer bert
--enc_full_graph
--graph_sprels
--fusion dynamic
--expert_policy spl
--train_alg ${train_alg}
--num_l_layers 9
--num_x_layers 4
--num_pano_layers 2
--max_action_len 15
--max_instr_len 200
--batch_size 8
--lr 1e-5
--iters 200000
--log_every 1000
--optim adamW
--features ${features}
--image_feat_size ${ft_dim}
--angle_feat_size 4
--ml_weight 0.2
--feat_dropout 0.4
--dropout 0.5
--gamma 0."
# train
CUDA_VISIBLE_DEVICES='0' python r2r/main_nav.py $flag \
--tokenizer bert \
--bert_ckpt_file 'put the pretrained model (see pretrain_src) here' \
--eval_first
# test
CUDA_VISIBLE_DEVICES='0' python r2r/main_nav.py $flag \
--tokenizer bert \
--resume_file ../datasets/R2R/trained_models/best_val_unseen \
--test --submit