Why: In visualization tool, we should check whether the agent arrive the target viewpoint. We need to calculate the distance between the GT viewpoint & the predicted viewpoint but it's difficult to calculate the distance without the simulator (we run the visualization tool on Jupyter notebook which is not in the docker container so we cannot use the simulator) How: After getting the result which gather from the env. We should run the eval_metrics() to get the success rate, FOUND score..., etc. So we get the "success" after eval_metrics() and log it in the predicted file so that the visualization tool can get the "success" status in the predicted file.
73 lines
1.7 KiB
Bash
73 lines
1.7 KiB
Bash
DATA_ROOT=../datasets
|
|
|
|
train_alg=dagger
|
|
|
|
features=vitbase
|
|
ft_dim=768
|
|
obj_features=vitbase
|
|
obj_ft_dim=768
|
|
|
|
ngpus=1
|
|
seed=0
|
|
|
|
name=${train_alg}-${features}-advanced-adversarial
|
|
name=${name}-seed.${seed} #-${ngpus}gpus
|
|
|
|
outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name}
|
|
|
|
flag="--root_dir ${DATA_ROOT}
|
|
--dataset reverie
|
|
--output_dir ${outdir}
|
|
--world_size ${ngpus}
|
|
--seed ${seed}
|
|
--tokenizer bert
|
|
|
|
--enc_full_graph
|
|
--graph_sprels
|
|
--fusion dynamic
|
|
--multi_endpoints
|
|
|
|
--dagger_sample sample
|
|
|
|
--train_alg ${train_alg}
|
|
|
|
--num_l_layers 9
|
|
--num_x_layers 4
|
|
--num_pano_layers 2
|
|
|
|
--max_action_len 15
|
|
--max_instr_len 200
|
|
--max_objects 20
|
|
|
|
--batch_size 8
|
|
--lr 1e-5
|
|
--iters 200000
|
|
--log_every 1000
|
|
--optim adamW
|
|
|
|
--features ${features}
|
|
--obj_features ${obj_features}
|
|
--image_feat_size ${ft_dim}
|
|
--angle_feat_size 4
|
|
--obj_feat_size ${obj_ft_dim}
|
|
|
|
--ml_weight 0.2
|
|
|
|
--feat_dropout 0.4
|
|
--dropout 0.5
|
|
|
|
--gamma 0."
|
|
|
|
# train
|
|
# CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
|
|
# --tokenizer bert \
|
|
# --bert_ckpt_file '../datasets/REVERIE/exprs_map/pretrain/cmt-vitbase-mlm.mrc.sap.og-init.lxmert-aug.speaker/ckpts/model_step_100000.pt' \
|
|
# --eval_first
|
|
|
|
# test
|
|
echo /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen
|
|
CUDA_VISIBLE_DEVICES='0' python3 reverie/main_nav_obj.py $flag \
|
|
--tokenizer bert \
|
|
--resume_file /root/mount/Matterport3DSimulator/VLN-DUET/datasets/REVERIE/exprs_map/finetune/${name}/ckpts/best_val_unseen \
|
|
--test --submit
|