adversarial_VLNDUET/map_nav_src/soon/data_utils.py
Shizhe Chen 747cf0587b init
2021-11-24 13:29:08 +01:00

120 lines
4.7 KiB
Python

import os
import json
import jsonlines
import h5py
import networkx as nx
import math
import numpy as np
import copy
from utils.data import angle_feature
def normalize_angle(x):
'''convert radians into (-pi, pi]'''
pi2 = 2 * math.pi
x = x % pi2 # [0, 2pi]
if x > math.pi:
x = x - pi2
return x
def convert_heading(x):
return x % (2 * math.pi) / (2 * math.pi) # [0, 2pi] -> [0, 1)
def convert_elevation(x):
return (normalize_angle(x) + math.pi) / (2 * math.pi) # [0, 2pi] -> [0, 1)
def load_instr_datasets(anno_dir, dataset, splits):
assert dataset == 'soon'
data = []
for split in splits:
if "/" not in split: # the official splits
new_data = []
# load instructions
input_file = os.path.join(anno_dir, 'bert_enc', '%s_enc_pseudo_obj_label.jsonl'%split)
if not os.path.exists(input_file):
input_file = os.path.join(anno_dir, 'bert_enc', '%s_enc.jsonl'%split)
with jsonlines.open(input_file, 'r') as f:
for item in f:
item['end_image_ids'] = [x['image_id'] for x in item['bboxes']]
item['image_id_to_obj_label'] = {x['image_id']: x.get('pseudo_label', None) for x in item['bboxes']}
new_bboxes = {}
for bbox in item['bboxes']:
new_bboxes[bbox['image_id']] = bbox
item['bboxes'] = new_bboxes
new_data.append(item)
else: # augmented data (TODO)
print('\nLoading augmented data %s for pretraining...' % os.path.basename(split))
with open(split) as f:
new_data = json.load(f)
# Join
data += new_data
return data
def construct_instrs(anno_dir, dataset, splits, instr_type='full', tokenizer=None, max_instr_len=512):
assert dataset == 'soon'
data = []
for i, item in enumerate(load_instr_datasets(anno_dir, dataset, splits)):
# Split multiple instructions into separate entries
for j, instr in enumerate(item['instructions']):
new_item = copy.deepcopy(item)
new_item['instr_id'] = '%s_%d' % (item['path_id'], j)
new_item['instruction'] = instr[instr_type]
new_item['instr_encoding'] = item['instr_encodings'][j][instr_type][:max_instr_len]
del new_item['instructions']
del new_item['instr_encodings']
data.append(new_item)
return data
class ObjectFeatureDB(object):
def __init__(self, obj_ft_file, obj_feat_size):
self.obj_feat_size = obj_feat_size
self.obj_ft_file = obj_ft_file
self._feature_store = {}
def load_feature(self, scan, viewpoint, max_objects=None):
key = '%s_%s' % (scan, viewpoint)
if key in self._feature_store:
obj_fts, obj_attrs = self._feature_store[key]
else:
with h5py.File(self.obj_ft_file, 'r') as f:
obj_attrs = {}
if key in f:
obj_fts = f[key][...][:, :self.obj_feat_size].astype(np.float32)
for attr_key, attr_value in f[key].attrs.items():
if attr_key in ['directions', 'bboxes', 'obj_ids']:
obj_attrs[attr_key] = attr_value
else:
obj_fts = np.zeros((0, self.obj_feat_size), dtype=np.float32)
self._feature_store[key] = (obj_fts, obj_attrs)
if max_objects is not None:
obj_fts = obj_fts[:max_objects]
obj_attrs = {k: v[:max_objects] for k, v in obj_attrs.items()}
return obj_fts, obj_attrs
def get_object_feature(
self, scan, viewpoint, base_heading, base_elevation, angle_feat_size,
max_objects=None
):
obj_fts, obj_attrs = self.load_feature(scan, viewpoint, max_objects=max_objects)
obj_ang_fts = np.zeros((len(obj_fts), angle_feat_size), dtype=np.float32)
obj_loc_fts = np.zeros((len(obj_fts), 3), dtype=np.float32)
obj_directions, obj_ids = [], []
if len(obj_fts) > 0:
for k, obj_ang in enumerate(obj_attrs['directions']):
obj_ang_fts[k] = angle_feature(
obj_ang[0] - base_heading, obj_ang[1] - base_elevation, angle_feat_size
)
x1, y1, x2, y2 = obj_attrs['bboxes'][k]
h = y2 - y1
w = x2 - x1
obj_loc_fts[k, :2] = [h/600, w/600]
obj_loc_fts[k, 2] = obj_loc_fts[k, 0] * obj_loc_fts[k, 1]
obj_directions = [[convert_heading(x[0]), convert_elevation(x[1])] for x in obj_attrs['directions']]
obj_ids = obj_attrs['obj_ids']
return obj_fts, obj_ang_fts, obj_loc_fts, obj_directions, obj_ids