adversarial_VLNDUET/pretrain_src/data/loader.py
Shizhe Chen 747cf0587b init
2021-11-24 13:29:08 +01:00

165 lines
5.1 KiB
Python

"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
A prefetch loader to speedup data loading
Modified from Nvidia Deep Learning Examples
(https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch).
"""
import random
from typing import List, Dict, Tuple, Union, Iterator
import torch
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
import torch.distributed as dist
class MetaLoader:
"""wraps multiple data loaders"""
def __init__(
self, loaders, accum_steps: int = 1, distributed: bool = False, device=None
):
assert isinstance(loaders, dict)
self.name2loader = {}
self.name2iter = {}
self.name2pre_epoch = {}
self.names: List[str] = []
ratios: List[int] = []
for n, l in loaders.items():
if isinstance(l, tuple):
l, r, p = l
elif isinstance(l, DataLoader):
r = 1
p = lambda e: None
else:
raise ValueError()
self.names.append(n)
self.name2loader[n] = l
self.name2iter[n] = iter(l)
self.name2pre_epoch[n] = p
ratios.append(r)
self.accum_steps = accum_steps
self.device = device
self.sampling_ratios = torch.tensor(ratios).float().to(self.device)
self.distributed = distributed
self.step = 0
def __iter__(self) -> Iterator[Tuple]:
"""this iterator will run indefinitely"""
task_id = None
epoch_id = 0
while True:
if self.step % self.accum_steps == 0:
task_id = torch.multinomial(self.sampling_ratios, 1)
if self.distributed:
# make sure all process is training same task
dist.broadcast(task_id, 0)
self.step += 1
task = self.names[task_id.cpu().item()]
iter_ = self.name2iter[task]
try:
batch = next(iter_)
except StopIteration:
epoch_id += 1
# In distributed mode, calling the set_epoch() method at the beginning of each epoch
# before creating the DataLoader iterator is necessary to make shuffling work properly
# across multiple epochs. Otherwise, the same ordering will be always used.
self.name2pre_epoch[task](epoch_id)
iter_ = iter(self.name2loader[task])
batch = next(iter_)
self.name2iter[task] = iter_
yield task, batch
def move_to_cuda(batch: Union[List, Tuple, Dict, torch.Tensor], device: torch.device):
if isinstance(batch, torch.Tensor):
return batch.to(device, non_blocking=True)
elif isinstance(batch, list):
return [move_to_cuda(t, device) for t in batch]
elif isinstance(batch, tuple):
return tuple(move_to_cuda(t, device) for t in batch)
elif isinstance(batch, dict):
return {n: move_to_cuda(t, device) for n, t in batch.items()}
return batch
class PrefetchLoader(object):
"""
overlap compute and cuda data transfer
"""
def __init__(self, loader, device: torch.device):
self.loader = loader
self.device = device
def __iter__(self):
loader_it = iter(self.loader)
self.preload(loader_it)
batch = self.next(loader_it)
while batch is not None:
yield batch
batch = self.next(loader_it)
def __len__(self):
return len(self.loader)
def preload(self, it):
try:
self.batch = next(it)
except StopIteration:
self.batch = None
return
self.batch = move_to_cuda(self.batch, self.device)
def next(self, it):
batch = self.batch
self.preload(it)
return batch
def __getattr__(self, name):
method = self.loader.__getattribute__(name)
return method
def build_dataloader(task, dataset, collate_fn, is_train: bool, opts):
batch_size = opts.train_batch_size if is_train else opts.val_batch_size
# if task == 'itm': batch_size = max(1, batch_size // 2)
if opts.local_rank == -1:
if is_train:
sampler: Union[
RandomSampler, SequentialSampler, DistributedSampler
] = RandomSampler(dataset)
else:
sampler = SequentialSampler(dataset)
size = torch.cuda.device_count() if torch.cuda.is_available() else 1
pre_epoch = lambda e: None
# DataParallel: scale the batch size by the number of GPUs
if size > 1:
batch_size *= size
else:
size = dist.get_world_size()
sampler = DistributedSampler(
dataset, num_replicas=size, rank=dist.get_rank(), shuffle=is_train
)
pre_epoch = sampler.set_epoch
loader = DataLoader(
dataset,
sampler=sampler,
batch_size=batch_size,
num_workers=opts.n_workers,
pin_memory=opts.pin_mem,
collate_fn=collate_fn,
drop_last=False,
)
return loader, pre_epoch