73 lines
1.8 KiB
Bash
73 lines
1.8 KiB
Bash
DATA_ROOT=../datasets
|
|
|
|
train_alg=dagger
|
|
|
|
features=vitbase
|
|
ft_dim=768
|
|
obj_features=vitbase
|
|
obj_ft_dim=768
|
|
|
|
ngpus=1
|
|
seed=0
|
|
|
|
name=${train_alg}-${features}-adversarial-but-original-model-with-glip-filter
|
|
name=${name}-seed.${seed} #-${ngpus}gpus
|
|
|
|
outdir=${DATA_ROOT}/REVERIE/exprs_map/finetune/${name}
|
|
|
|
flag="--root_dir ${DATA_ROOT}
|
|
--dataset reverie
|
|
--output_dir ${outdir}
|
|
--world_size ${ngpus}
|
|
--seed ${seed}
|
|
--tokenizer bert
|
|
|
|
--enc_full_graph
|
|
--graph_sprels
|
|
--fusion dynamic
|
|
--multi_endpoints
|
|
|
|
--dagger_sample sample
|
|
|
|
--train_alg ${train_alg}
|
|
|
|
--num_l_layers 9
|
|
--num_x_layers 4
|
|
--num_pano_layers 2
|
|
|
|
--max_action_len 15
|
|
--max_instr_len 200
|
|
--max_objects 20
|
|
|
|
--batch_size 8
|
|
--lr 1e-5
|
|
--iters 200000
|
|
--log_every 1000
|
|
--optim adamW
|
|
|
|
--features ${features}
|
|
--obj_features ${obj_features}
|
|
--image_feat_size ${ft_dim}
|
|
--angle_feat_size 4
|
|
--obj_feat_size ${obj_ft_dim}
|
|
|
|
--ml_weight 0.2
|
|
|
|
--feat_dropout 0.4
|
|
--dropout 0.5
|
|
|
|
--gamma 0."
|
|
|
|
# train
|
|
# CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \
|
|
# --tokenizer bert \
|
|
# --resume_file ../datasets/REVERIE/exprs_map/finetune/dagger-vitbase-adversarial-but-original-model-with-glip-filter-seed.0/ckpts/best_val_unseen \
|
|
# --bert_ckpt_file '../datasets/REVERIE/exprs_map/pretrain/cmt-vitbase-mlm.mrc.sap.og-init.lxmert-aug.speaker/ckpts/model_step_100000.pt' \
|
|
# --eval_first
|
|
|
|
# test
|
|
CUDA_VISIBLE_DEVICES='0' python reverie/main_nav_obj.py $flag \
|
|
--tokenizer bert \
|
|
--resume_file ../datasets/REVERIE/exprs_map/finetune/dagger-vitbase-adversarial-but-original-model-with-glip-filter-seed.0/ckpts/best_val_unseen \
|
|
--test --submit
|