108 lines
4.3 KiB
Python
108 lines
4.3 KiB
Python
import os
|
|
import json
|
|
import jsonlines
|
|
import h5py
|
|
import numpy as np
|
|
|
|
from utils.data import angle_feature
|
|
|
|
class ObjectFeatureDB(object):
|
|
def __init__(self, obj_ft_file, obj_feat_size):
|
|
self.obj_feat_size = obj_feat_size
|
|
self.obj_ft_file = obj_ft_file
|
|
self._feature_store = {}
|
|
|
|
def load_feature(self, scan, viewpoint, max_objects=None):
|
|
key = '%s_%s' % (scan, viewpoint)
|
|
if key in self._feature_store:
|
|
obj_fts, obj_attrs = self._feature_store[key]
|
|
else:
|
|
with h5py.File(self.obj_ft_file, 'r') as f:
|
|
obj_attrs = {}
|
|
if key in f:
|
|
obj_fts = f[key][...][:, :self.obj_feat_size].astype(np.float32)
|
|
for attr_key, attr_value in f[key].attrs.items():
|
|
obj_attrs[attr_key] = attr_value
|
|
else:
|
|
obj_fts = np.zeros((0, self.obj_feat_size), dtype=np.float32)
|
|
self._feature_store[key] = (obj_fts, obj_attrs)
|
|
|
|
if max_objects is not None:
|
|
obj_fts = obj_fts[:max_objects]
|
|
obj_attrs = {k: v[:max_objects] for k, v in obj_attrs.items()}
|
|
return obj_fts, obj_attrs
|
|
|
|
def get_object_feature(
|
|
self, scan, viewpoint, base_heading, base_elevation, angle_feat_size,
|
|
max_objects=None
|
|
):
|
|
obj_fts, obj_attrs = self.load_feature(scan, viewpoint, max_objects=max_objects)
|
|
obj_ang_fts = np.zeros((len(obj_fts), angle_feat_size), dtype=np.float32)
|
|
obj_box_fts = np.zeros((len(obj_fts), 3), dtype=np.float32)
|
|
obj_ids = []
|
|
if len(obj_fts) > 0:
|
|
for k, obj_ang in enumerate(obj_attrs['directions']):
|
|
obj_ang_fts[k] = angle_feature(
|
|
obj_ang[0] - base_heading, obj_ang[1] - base_elevation, angle_feat_size
|
|
)
|
|
w, h = obj_attrs['sizes'][k]
|
|
obj_box_fts[k, :2] = [h/480, w/640]
|
|
obj_box_fts[k, 2] = obj_box_fts[k, 0] * obj_box_fts[k, 1]
|
|
obj_ids = obj_attrs['obj_ids']
|
|
return obj_fts, obj_ang_fts, obj_box_fts, obj_ids
|
|
|
|
|
|
def load_instr_datasets(anno_dir, dataset, splits, tokenizer):
|
|
data = []
|
|
for split in splits:
|
|
if "/" not in split: # the official splits
|
|
if tokenizer == 'bert':
|
|
filepath = os.path.join(anno_dir, 'REVERIE_%s_enc.json' % split)
|
|
elif tokenizer == 'xlm':
|
|
filepath = os.path.join(anno_dir, 'REVERIE_%s_enc_xlmr.json' % split)
|
|
else:
|
|
raise NotImplementedError('unspported tokenizer %s' % tokenizer)
|
|
|
|
with open(filepath) as f:
|
|
new_data = json.load(f)
|
|
else: # augmented data
|
|
print('\nLoading augmented data %s for pretraining...' % os.path.basename(split))
|
|
with open(split) as f:
|
|
new_data = json.load(f)
|
|
# Join
|
|
data += new_data
|
|
return data
|
|
|
|
def construct_instrs(anno_dir, dataset, splits, tokenizer, max_instr_len=512):
|
|
data = []
|
|
for i, item in enumerate(load_instr_datasets(anno_dir, dataset, splits, tokenizer)):
|
|
# Split multiple instructions into separate entries
|
|
for j, instr in enumerate(item['instructions']):
|
|
new_item = dict(item)
|
|
if 'objId' in item:
|
|
new_item['instr_id'] = '%s_%s_%d' % (str(item['path_id']), str(item['objId']), j)
|
|
else:
|
|
new_item['path_id'] = item['id']
|
|
new_item['instr_id'] = '%s_%d' % (item['id'], j)
|
|
new_item['objId'] = None
|
|
new_item['instruction'] = instr
|
|
new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len]
|
|
new_item['found'] = item['found'][j]
|
|
del new_item['instructions']
|
|
del new_item['instr_encodings']
|
|
data.append(new_item)
|
|
return data
|
|
|
|
def load_obj2vps(bbox_file):
|
|
obj2vps = {}
|
|
bbox_data = json.load(open(bbox_file))
|
|
for scanvp, value in bbox_data.items():
|
|
scan, vp = scanvp.split('_')
|
|
# for all visible objects at that viewpoint
|
|
for objid, objinfo in value.items():
|
|
if objinfo['visible_pos']:
|
|
# if such object not already in the dict
|
|
obj2vps.setdefault(scan+'_'+objid, [])
|
|
obj2vps[scan+'_'+objid].append(vp)
|
|
return obj2vps
|