adversarial_VLNDUET/map_nav_src/reverie/data_utils.py

109 lines
4.3 KiB
Python

import os
import json
import jsonlines
import h5py
import numpy as np
from utils.data import angle_feature
class ObjectFeatureDB(object):
def __init__(self, obj_ft_file, obj_feat_size):
self.obj_feat_size = obj_feat_size
self.obj_ft_file = obj_ft_file
self._feature_store = {}
def load_feature(self, scan, viewpoint, max_objects=None):
key = '%s_%s' % (scan, viewpoint)
if key in self._feature_store:
obj_fts, obj_attrs = self._feature_store[key]
else:
with h5py.File(self.obj_ft_file, 'r') as f:
obj_attrs = {}
if key in f:
obj_fts = f[key][...][:, :self.obj_feat_size].astype(np.float32)
for attr_key, attr_value in f[key].attrs.items():
obj_attrs[attr_key] = attr_value
else:
obj_fts = np.zeros((0, self.obj_feat_size), dtype=np.float32)
self._feature_store[key] = (obj_fts, obj_attrs)
if max_objects is not None:
obj_fts = obj_fts[:max_objects]
obj_attrs = {k: v[:max_objects] for k, v in obj_attrs.items()}
return obj_fts, obj_attrs
def get_object_feature(
self, scan, viewpoint, base_heading, base_elevation, angle_feat_size,
max_objects=None
):
obj_fts, obj_attrs = self.load_feature(scan, viewpoint, max_objects=max_objects)
obj_ang_fts = np.zeros((len(obj_fts), angle_feat_size), dtype=np.float32)
obj_box_fts = np.zeros((len(obj_fts), 3), dtype=np.float32)
obj_ids = []
if len(obj_fts) > 0:
for k, obj_ang in enumerate(obj_attrs['directions']):
obj_ang_fts[k] = angle_feature(
obj_ang[0] - base_heading, obj_ang[1] - base_elevation, angle_feat_size
)
w, h = obj_attrs['sizes'][k]
obj_box_fts[k, :2] = [h/480, w/640]
obj_box_fts[k, 2] = obj_box_fts[k, 0] * obj_box_fts[k, 1]
obj_ids = obj_attrs['obj_ids']
return obj_fts, obj_ang_fts, obj_box_fts, obj_ids
def load_instr_datasets(anno_dir, dataset, splits, tokenizer):
data = []
for split in splits:
if "/" not in split: # the official splits
if tokenizer == 'bert':
filepath = os.path.join(anno_dir, 'REVERIE_%s_enc.json' % split)
elif tokenizer == 'xlm':
filepath = os.path.join(anno_dir, 'REVERIE_%s_enc_xlmr.json' % split)
else:
raise NotImplementedError('unspported tokenizer %s' % tokenizer)
with open(filepath) as f:
new_data = json.load(f)
else: # augmented data
print('\nLoading augmented data %s for pretraining...' % os.path.basename(split))
with open(split) as f:
new_data = json.load(f)
# Join
data += new_data
return data
def construct_instrs(anno_dir, dataset, splits, tokenizer, max_instr_len=512):
data = []
for i, item in enumerate(load_instr_datasets(anno_dir, dataset, splits, tokenizer)):
# Split multiple instructions into separate entries
for j, instr in enumerate(item['instructions']):
new_item = dict(item)
if 'objId' in item:
new_item['instr_id'] = '%s_%s_%d' % (str(item['path_id']), str(item['objId']), j)
else:
new_item['path_id'] = item['id']
new_item['instr_id'] = '%s_%d' % (item['id'], j)
new_item['objId'] = None
new_item['instruction'] = instr
new_item['instr_encoding'] = item['instr_encodings'][j][:max_instr_len]
new_item['path'] = item['path'][j]
new_item['found'] = item['found'][j]
del new_item['instructions']
del new_item['instr_encodings']
data.append(new_item)
return data
def load_obj2vps(bbox_file):
obj2vps = {}
bbox_data = json.load(open(bbox_file))
for scanvp, value in bbox_data.items():
scan, vp = scanvp.split('_')
# for all visible objects at that viewpoint
for objid, objinfo in value.items():
if objinfo['visible_pos']:
# if such object not already in the dict
obj2vps.setdefault(scan+'_'+objid, [])
obj2vps[scan+'_'+objid].append(vp)
return obj2vps