Compare commits

...

11 Commits

3 changed files with 172 additions and 32 deletions

View File

@ -1,8 +1,13 @@
from os.path import isdir
import socket
import os
import json
import threading
import docker
import time
from docker.models.containers import Image
class ClusterCommunicationModule():
def __init__(self, host, port, node_manager):
# TCP server
@ -47,6 +52,8 @@ class ClusterCommunicationModule():
if self.node_manager.docker_client.swarm.attrs == {}:
print("Build new docker swarm...")
self.node_manager.docker_client.swarm.init(advertise_addr=self.host, listen_addr=f"{self.host}:2377", force_new_cluster=True)
print("Create new overlay network")
self.node_manager.docker_client.networks.create(name='train-net', driver='overlay', attachable=True)
# send docker swarm token to the worker
token = self.node_manager.docker_client.swarm.attrs['JoinTokens']['Worker']
@ -69,7 +76,7 @@ class ClusterCommunicationModule():
# join docker swarm cluster
token = self.client_sock.recv(1024).decode().split(' ')[-1]
print("Receive Docker Swarm Join_Token=", token)
status = self.node_manager.docker_client.swarm.join(remote_addrs=[f'{addr[0]}:2377'], join_token=token)
status = self.node_manager.docker_client.swarm.join(remote_addrs=[f'{addr[0]}:2377'], join_token=token, advertise_addr=f'{addr[0]}:2377')
if not status:
print("Some Errors!")
@ -109,6 +116,16 @@ class ClusterCommunicationModule():
elif command == '[START_LISTEN_TASK]':
self.client_sock.send('[START_LISTEN_TASK_CHECK] {}'.encode())
print("The master has started listening for new task from Sepolia testnet...")
elif command == '[RUN_CONTAINER]':
args = json.loads(args)
image = args['image']
train = args['train']
print(f"[RUN_CONTAINER] {image}")
self.run_container(image, train, args)
print(f"[RUN_CONTAINER SUCCESS] {image}")
self.client_sock.send('[RUN_CONTAINER_SUCCESS] {}'.encode())
return True
@ -163,10 +180,11 @@ class ClusterCommunicationModule():
def exit(self):
if self.node_manager.status == 'master':
for conn in self.worker_conns:
conn.send('[STOP] {}'.encode())
check, args = conn.recv(1024).decode().split(' ')
print(f'{args} has stopped.')
self.node_manager.docker_client.swarm.leave(force=True)
try:
conn.send('[STOP] {}'.encode())
check, args = conn.recv(1024).decode().split(' ')
except:
print(f'{args} has stopped.')
if self.node_manager.status == 'worker':
self.node_manager.docker_client.swarm.leave()
@ -176,6 +194,113 @@ class ClusterCommunicationModule():
for conn in self.worker_conns:
conn.close()
def run_container(self, image_name, train, train_args={}):
'''
train_args
- index
- node_num
'''
if not os.path.isdir('./dataset_dir'):
os.mkdir('./dataset_dir')
print("Create ./dataset_dir dir.")
if not os.path.isdir('./output'):
os.mkdir('./output')
print("Create ./output dir.")
if not train:
container = self.node_manager.docker_client.containers.run(
image_name,
volumes={'dataset_dir': {'bind': '/dataset', 'mode': 'rw'}},
detach=True
)
else:
container = self.node_manager.docker_client.containers.run(
image_name,
volumes={
'dataset_dir': {'bind': '/dataset', 'mode': 'rw'},
'output': {'bind': '/output', 'mode': 'rw'},
},
network='train-net',
runtime='nvidia',
device_requests=[
docker.types.DeviceRequest(count=-1, capabilities=[['gpu']])
],
name=f'train-{train_args["index"]}',
environment={
'GPU_NUM': self.node_manager.GPU_num,
'NODE_NUM': train_args['node_num'],
'NODE_RANK': train_args['index'],
'MASTER_IP': 'train-0' if self.node_manager.status == 'worker' else '127.0.0.1',
'MASTER_PORT': 21046,
},
detach=True
)
print(container.short_id)
for line in container.logs(stream=True):
print(line.strip().decode())
result = container.wait()
status_code = result['StatusCode']
if status_code != 0:
print(f'[ERROR] some error occur in the docker container, error_code={status_code}')
container.remove()
def scatter_container(self, image_name, train):
def master_run(image_name):
print("[Master] run")
train_args = {
'index': 0,
'node_num': len(self.worker_conns)+1
}
self.run_container(image_name, train, train_args)
print("[Master] finished")
def send_and_wait(conn_index, conn, image_name):
try:
# build command
data = {
'image': image_name,
'train': train,
'index': conn_index+1,
'node_num': len(self.worker_conns)+1
}
command = '[RUN_CONTAINER] {}'.format(json.dumps(data))
# send
conn.send(command.encode())
print(f"[WORKER {conn_index}] Send command {command}")
# wait
data, args = conn.recv(1024).decode().split(' ')
print(f"[WORKER {conn_index}] finished")
except:
print("[WARN] connection {conn_index} disconnected.")
# build threads
threads = []
master_t = threading.Thread(target=master_run, args=(image_name, ))
threads.append(master_t)
for index, conn in enumerate(self.worker_conns):
t = threading.Thread(target=send_and_wait, args=(index, conn, image_name))
threads.append(t)
# start threads & wait
for thread in threads:
thread.start()
for thread in threads:
thread.join()
# all finished
print("\n[INFO] All workers finished.")
'''
conn.send('[RUN_CONTAINER] '.encode())
data, args = conn.recv(1024).decode().split(' ')
'''
class ServiceExplorationModule():
def __init__(self, host, port, node_manager):

View File

@ -85,6 +85,7 @@ class NodeManager():
print(f"And we have load your wallet private key {WALLET_KEY} (address={self.wallet.address})")
print()
if self.w3.is_connected():
'''
print("[INFO] Connected Successfully.")
print()
@ -116,8 +117,16 @@ class NodeManager():
print("\n[INFO] You Receive a new task:")
print(f" - Download Image: {data_image}")
print(f" - Training Image: {train_image}")
'''
data_image = "snsd0805/cifar100-dataset:v1"
train_image = "snsd0805/cifar100-train:v3"
# Start Downloading
# self.cluster_communication_module.scatter_container(data_image, train=False)
# start training
self.cluster_communication_module.scatter_container(train_image, train=True)
else:

58
test.py
View File

@ -1,34 +1,40 @@
from web3 import Web3
from src.scheduler import Scheduler
import docker
import os
SCHEDULER_ADDR = "0x544eAe853EA3774A8857573C6423E6Db95b79258"
SCHEDULER_ABI_FILE = "../gpu-contract/abi/Scheduler.abi"
PROVIDER1_KEY = "0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80"
PROVIDER2_KEY = "0x59c6995e998f97a5a0044966f0945389dc9e86dae88c7a8412f4603b6b78690d"
PROVIDER3_KEY = "0x5de4111afa1a4b94908f83103eb1f1706367c2e68ca870fc3fb9a804cdab365a"
if not os.path.isdir('./dataset_dir'):
os.mkdir('./dataset_dir')
CLIENT_KEY = "0x7c852118294e51e653712a81e05800f419141751be58f605c371e15141b007a6"
docker_client = docker.from_env()
container = docker_client.containers.run(
'snsd0805/cifar100-train:v3',
volumes={
'dataset_dir': {'bind': '/dataset', 'mode': 'rw'},
'output': {'bind': '/output', 'mode': 'rw'},
},
network='train-net',
runtime='nvidia',
device_requests=[
docker.types.DeviceRequest(count=-1, capabilities=[['gpu']])
],
name='train-0',
environment={
'GPU_NUM': 1,
'NODE_NUM': 1,
'NODE_RANK': 0,
'MASTER_IP': 'train-0',
'MASTER_PORT': 21046,
},
detach=True
)
w3 = Web3(Web3.HTTPProvider('http://127.0.0.1:8545'))
if __name__ == '__main__':
if w3.is_connected():
scheduler = Scheduler(w3, SCHEDULER_ADDR, SCHEDULER_ABI_FILE)
print(container.short_id)
for line in container.logs(stream=True):
print(line.strip().decode())
provider1 = w3.eth.account.from_key(PROVIDER1_KEY)
provider2 = w3.eth.account.from_key(PROVIDER2_KEY)
provider3 = w3.eth.account.from_key(PROVIDER3_KEY)
client = w3.eth.account.from_key(CLIENT_KEY)
result = container.wait()
status_code = result['StatusCode']
print(status_code, type(status_code))
print(scheduler.getClusters())
scheduler.registerCluster(provider1, 1, 4)
scheduler.registerCluster(provider2, 2, 2)
scheduler.registerCluster(provider3, 3, 1)
scheduler.registerTaskWithConditions(client, "https://data.com", "http://train.tw", 3, 1)
print(scheduler.getClusters())
print(scheduler.getTasks())
else:
print("cannot connected to the chain")