feat: add NOT_FOUND action in rollout
This commit is contained in:
parent
4936098b5e
commit
03a3e5b489
@ -147,7 +147,7 @@ class Seq2SeqAgent(BaseAgent):
|
||||
return Variable(torch.from_numpy(features), requires_grad=False).cuda()
|
||||
|
||||
def _candidate_variable(self, obs):
|
||||
candidate_leng = [len(ob['candidate']) + 1 for ob in obs] # +1 is for the end
|
||||
candidate_leng = [len(ob['candidate']) + 2 for ob in obs] # +1 is for the end
|
||||
candidate_feat = np.zeros((len(obs), max(candidate_leng), self.feature_size + args.angle_feat_size), dtype=np.float32)
|
||||
|
||||
# Note: The candidate_feat at len(ob['candidate']) is the feature for the END
|
||||
@ -155,6 +155,8 @@ class Seq2SeqAgent(BaseAgent):
|
||||
for i, ob in enumerate(obs):
|
||||
for j, cc in enumerate(ob['candidate']):
|
||||
candidate_feat[i, j, :] = cc['feature']
|
||||
candidate_feat[i, len(ob['candidate']), :] = np.zeros(self.feature_size+args.angle_feat_size, dtype=np.float32) # <STOP>
|
||||
candidate_feat[i, len(ob['candidate'])+1, :] = np.ones(self.feature_size+args.angle_feat_size, dtype=np.float32) # <NOT_FOUND>
|
||||
|
||||
return torch.from_numpy(candidate_feat).cuda(), candidate_leng
|
||||
|
||||
@ -186,10 +188,13 @@ class Seq2SeqAgent(BaseAgent):
|
||||
break
|
||||
else: # Stop here
|
||||
assert ob['teacher'] == ob['viewpoint'] # The teacher action should be "STAY HERE"
|
||||
a[i] = len(ob['candidate'])
|
||||
if ob['found']:
|
||||
a[i] = len(ob['candidate'])
|
||||
else:
|
||||
a[i] = len(ob['candidate'])+1
|
||||
return torch.from_numpy(a).cuda()
|
||||
|
||||
def make_equiv_action(self, a_t, perm_obs, perm_idx=None, traj=None):
|
||||
def make_equiv_action(self, a_t, perm_obs, perm_idx=None, traj=None, found=None):
|
||||
"""
|
||||
Interface between Panoramic view and Egocentric view
|
||||
It will convert the action panoramic view action a_t to equivalent egocentric view actions for the simulator
|
||||
@ -205,7 +210,7 @@ class Seq2SeqAgent(BaseAgent):
|
||||
|
||||
for i, idx in enumerate(perm_idx):
|
||||
action = a_t[i]
|
||||
if action != -1: # -1 is the <stop> action
|
||||
if action != -1 and action != -2: # -1 is the <stop> action
|
||||
select_candidate = perm_obs[i]['candidate'][action]
|
||||
src_point = perm_obs[i]['viewIndex']
|
||||
trg_point = select_candidate['pointId']
|
||||
@ -228,6 +233,10 @@ class Seq2SeqAgent(BaseAgent):
|
||||
# print("action: {} view_index: {}".format(action, state.viewIndex))
|
||||
if traj is not None:
|
||||
traj[i]['path'].append((state.location.viewpointId, state.heading, state.elevation))
|
||||
elif action == -1 or action == -2:
|
||||
if found is not None:
|
||||
found[i] = action
|
||||
|
||||
|
||||
def rollout(self, train_ml=None, train_rl=True, reset=True):
|
||||
"""
|
||||
@ -271,6 +280,8 @@ class Seq2SeqAgent(BaseAgent):
|
||||
'path': [(ob['viewpoint'], ob['heading'], ob['elevation'])],
|
||||
} for ob in perm_obs]
|
||||
|
||||
found = [ None for _ in range(len(perm_obs)) ]
|
||||
|
||||
# Init the reward shaping
|
||||
last_dist = np.zeros(batch_size, np.float32)
|
||||
last_ndtw = np.zeros(batch_size, np.float32)
|
||||
@ -294,6 +305,15 @@ class Seq2SeqAgent(BaseAgent):
|
||||
|
||||
input_a_t, candidate_feat, candidate_leng = self.get_input_feat(perm_obs)
|
||||
|
||||
'''
|
||||
# show feature
|
||||
for index, feat in enumerate(candidate_feat):
|
||||
for ff in feat:
|
||||
print(ff)
|
||||
print(candidate_leng[index])
|
||||
print()
|
||||
'''
|
||||
|
||||
|
||||
# the first [CLS] token, initialized by the language BERT, serves
|
||||
# as the agent's state passing through time steps
|
||||
@ -324,9 +344,22 @@ class Seq2SeqAgent(BaseAgent):
|
||||
|
||||
# Supervised training
|
||||
target = self._teacher_action(perm_obs, ended)
|
||||
for i in perm_obs:
|
||||
print(i['found'], end=' ')
|
||||
ml_loss += self.criterion(logit, target)
|
||||
|
||||
|
||||
'''
|
||||
for index, mask in enumerate(candidate_mask):
|
||||
print(mask)
|
||||
print(candidate_leng[index])
|
||||
print(logit[index])
|
||||
print(target[index])
|
||||
print("\n\n")
|
||||
'''
|
||||
|
||||
# Determine next model inputs
|
||||
|
||||
if self.feedback == 'teacher':
|
||||
a_t = target # teacher forcing
|
||||
elif self.feedback == 'argmax':
|
||||
@ -344,15 +377,24 @@ class Seq2SeqAgent(BaseAgent):
|
||||
else:
|
||||
print(self.feedback)
|
||||
sys.exit('Invalid feedback option')
|
||||
|
||||
# Prepare environment action
|
||||
# NOTE: Env action is in the perm_obs space
|
||||
cpu_a_t = a_t.cpu().numpy()
|
||||
for i, next_id in enumerate(cpu_a_t):
|
||||
if next_id == (candidate_leng[i]-1) or next_id == args.ignoreid or ended[i]: # The last action is <end>
|
||||
cpu_a_t[i] = -1 # Change the <end> and ignore action to -1
|
||||
if next_id == (args.ignoreid) or ended[i]:
|
||||
cpu_a_t[i] = found[i]
|
||||
elif next_id == (candidate_leng[i]-2):
|
||||
cpu_a_t[i] = -1
|
||||
elif next_id == (candidate_leng[i]-1):
|
||||
cpu_a_t[i] = -2
|
||||
|
||||
|
||||
print(cpu_a_t)
|
||||
|
||||
# Make action and get the new state
|
||||
self.make_equiv_action(cpu_a_t, perm_obs, perm_idx, traj)
|
||||
self.make_equiv_action(cpu_a_t, perm_obs, perm_idx, traj, found)
|
||||
print(self.feedback, found)
|
||||
obs = np.array(self.env._get_obs())
|
||||
perm_obs = obs[perm_idx] # Perm the obs for the resu
|
||||
|
||||
@ -376,6 +418,20 @@ class Seq2SeqAgent(BaseAgent):
|
||||
if action_idx == -1: # If the action now is end
|
||||
if dist[i] < 3.0: # Correct
|
||||
reward[i] = 2.0 + ndtw_score[i] * 2.0
|
||||
if ob['found']:
|
||||
reward[i] += 1
|
||||
else:
|
||||
reward[i] -= 2
|
||||
else: # Incorrect
|
||||
reward[i] = -2.0
|
||||
|
||||
elif action_idx == -2:
|
||||
if dist[i] < 3.0:
|
||||
reward[i] = 2.0 + ndtw_score[i] * 2.0
|
||||
if ob['found']:
|
||||
reward[i] -= 2
|
||||
else:
|
||||
reward[i] += 1
|
||||
else: # Incorrect
|
||||
reward[i] = -2.0
|
||||
else: # The action is not end
|
||||
@ -399,6 +455,7 @@ class Seq2SeqAgent(BaseAgent):
|
||||
# Update the finished actions
|
||||
# -1 means ended or ignored (already ended)
|
||||
ended[:] = np.logical_or(ended, (cpu_a_t == -1))
|
||||
ended[:] = np.logical_or(ended, (cpu_a_t == -2))
|
||||
|
||||
# Early exit if all ended
|
||||
if ended.all():
|
||||
@ -476,6 +533,7 @@ class Seq2SeqAgent(BaseAgent):
|
||||
else:
|
||||
self.losses.append(self.loss.item() / self.episode_len) # This argument is useless.
|
||||
|
||||
print('\n')
|
||||
return traj
|
||||
|
||||
def test(self, use_dropout=False, feedback='argmax', allow_cheat=False, iters=None):
|
||||
|
||||
@ -127,6 +127,7 @@ class R2RBatch():
|
||||
new_item = dict(item)
|
||||
new_item['instr_id'] = '%s_%d' % (item['path_id'], j)
|
||||
new_item['instructions'] = instr
|
||||
new_item['found'] = item['found'][j]
|
||||
|
||||
''' BERT tokenizer '''
|
||||
instr_tokens = tokenizer.tokenize(instr)
|
||||
@ -328,6 +329,7 @@ class R2RBatch():
|
||||
# [visual_feature, angle_feature] for views
|
||||
feature = np.concatenate((feature, self.angle_feature[base_view_id]), -1)
|
||||
|
||||
|
||||
obs.append({
|
||||
'instr_id' : item['instr_id'],
|
||||
'scan' : state.scanId,
|
||||
@ -341,7 +343,8 @@ class R2RBatch():
|
||||
'instructions' : item['instructions'],
|
||||
'teacher' : self._shortest_path_action(state, item['path'][-1]),
|
||||
'gt_path' : item['path'],
|
||||
'path_id' : item['path_id']
|
||||
'path_id' : item['path_id'],
|
||||
'found': item['found']
|
||||
})
|
||||
if 'instr_encoding' in item:
|
||||
obs[-1]['instr_encoding'] = item['instr_encoding']
|
||||
|
||||
Loading…
Reference in New Issue
Block a user