update readme

This commit is contained in:
Yicong Hong 2021-01-14 16:15:01 +11:00
parent 0a8ea4dc53
commit 2588537505
4 changed files with 15 additions and 28 deletions

View File

@ -1,45 +1,38 @@
# Entity-Graph-VLN
# Recurrent-VLN-BERT
Code of the NeurIPS 2020 paper:
**Language and Visual Entity Relationship Graph for Agent Navigation**<br>
[**Yicong Hong**](http://www.yiconghong.me/), [Cristian Rodriguez-Opazo](https://crodriguezo.github.io/), [Yuankai Qi](https://sites.google.com/site/yuankiqi/home), [Qi Wu](http://www.qi-wu.me/), [Stephen Gould](http://users.cecs.anu.edu.au/~sgould/)<br>
Code of the Recurrent-VLN-BERT paper:
**A Recurrent Vision-and-Language BERT for Navigation**<br>
[**Yicong Hong**](http://www.yiconghong.me/), [Qi Wu](http://www.qi-wu.me/), [Yuankai Qi](https://sites.google.com/site/yuankiqi/home), [Cristian Rodriguez-Opazo](https://crodriguezo.github.io/), [Stephen Gould](http://users.cecs.anu.edu.au/~sgould/)<br>
[[Paper](https://papers.nips.cc/paper/2020/hash/56dc0997d871e9177069bb472574eb29-Abstract.html)] [[Supplemental](https://papers.nips.cc/paper/2020/file/56dc0997d871e9177069bb472574eb29-Supplemental.pdf)] [[GitHub](https://github.com/YicongHong/Entity-Graph-VLN)]
<p align="center">
<img src="teaser/f1.png" width="100%">
</p>
[[Paper & Appendices](https://arxiv.org/abs/2011.13922) | [GitHub](https://github.com/YicongHong/Entity-Graph-VLN)]
## Prerequisites
### Installation
Install the [Matterport3D Simulator](https://github.com/peteanderson80/Matterport3DSimulator).
Please find the versions of packages in our environment [here](https://github.com/YicongHong/Recurrent-VLN-BERT/blob/main/recurrent-vln-bert.yml).
Please find the versions of packages in our environment [here](https://github.com/YicongHong/Entity-Graph-VLN/blob/master/entity_graph_vln.yml). In particular, we use:
- Python 3.6.9
- NumPy 1.18.1
- OpenCV 3.4.2
- PyTorch 1.3.0
- Torchvision 0.4.1
Install the [Pytorch-Transformers](https://github.com/huggingface/transformers).
In particular, we use [this version](https://github.com/huggingface/transformers/tree/067923d3267325f525f4e46f357360c191ba562e) (same as [OSCAR](https://github.com/microsoft/Oscar)) in our experiments.
### Data Preparation
Please follow the instructions below to prepare the data in directories:
- `connectivity`
- MP3D navigability graphs: `connectivity`
- Download the [connectivity maps [23.8MB]](https://github.com/peteanderson80/Matterport3DSimulator/tree/master/connectivity).
- `data`
- R2R data: `data`
- Download the [R2R data [5.8MB]](https://github.com/peteanderson80/Matterport3DSimulator/tree/master/tasks/R2R/data).
- Download the vocabulary and the [augmented data from EnvDrop [79.5MB]](https://github.com/airsplay/R2R-EnvDrop/tree/master/tasks/R2R/data).
- `img_features`
- Augmented data: `data/prevalent`
- Download the [collected triplets in PREVALENT [1.5GB]](https://zenodo.org/record/4437864/files/prevalent_aug.json?download=1) (pre-processed for easy use).
- MP3D image features: `img_features`
- Download the [Scene features [4.2GB]](https://www.dropbox.com/s/85tpa6tc3enl5ud/ResNet-152-places365.zip?dl=1) (ResNet-152-Places365).
- Download the pre-processed [Object features and vocabulary [1.3GB]](https://zenodo.org/record/4310441/files/objects.zip?download=1) ([Caffe Faster-RCNN](https://github.com/peteanderson80/bottom-up-attention)).
### Trained Network Weights
- `snap`
- Download the trained [network weights [146.0MB]](https://zenodo.org/record/4310441/files/snap.zip?download=1)
- Recurrent-VLN-BERT: `snap`
- Download the [trained network weights [2.5GB]](https://zenodo.org/record/4437864/files/snap.zip?download=1) for our OSCAR-based and PREVALENT-based models.
## R2R Navigation

View File

@ -9,8 +9,6 @@ from torch import nn
import torch.nn.functional as F
from torch.nn import CrossEntropyLoss, MSELoss
import sys
sys.path.append('Oscar/Oscar')
from transformers.pytorch_transformers.modeling_bert import (BertEmbeddings,
BertSelfAttention, BertAttention, BertEncoder, BertLayer,
BertSelfOutput, BertIntermediate, BertOutput,

View File

@ -14,7 +14,6 @@ import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
sys.path.append('Oscar/Oscar')
from transformers.pytorch_transformers.modeling_bert import BertPreTrainedModel, BertConfig
import pdb

View File

@ -1,8 +1,5 @@
# Recurrent VLN-BERT, 2020, by Yicong.Hong@anu.edu.au
import sys
sys.path.append('Oscar/Oscar')
from transformers.pytorch_transformers import (BertConfig, BertTokenizer)
def get_tokenizer(args):