feat: complete NOT_FOUND but always 50:50

- Notice: comment out RL
- Notice: always 50:50, seems there exist some bugs
This commit is contained in:
Ting-Jun Wang 2023-11-07 01:21:15 +08:00
parent 03a3e5b489
commit 595866c2f4
Signed by: snsd0805
GPG Key ID: 48D331A3D6160354
3 changed files with 53 additions and 19 deletions

View File

@ -35,12 +35,12 @@ class BaseAgent(object):
self.losses = [] # For learning agents
def write_results(self):
output = [{'instr_id':k, 'trajectory': v} for k,v in self.results.items()]
output = [{'instr_id':k, 'trajectory': v[0], 'found': v[1]} for k,v in self.results.items()]
with open(self.results_path, 'w') as f:
json.dump(output, f)
def get_results(self):
output = [{'instr_id': k, 'trajectory': v} for k, v in self.results.items()]
output = [{'instr_id': k, 'trajectory': v[0], 'found': v[1]} for k, v in self.results.items()]
return output
def rollout(self, **args):
@ -61,17 +61,19 @@ class BaseAgent(object):
if iters is not None:
# For each time, it will run the first 'iters' iterations. (It was shuffled before)
for i in range(iters):
for traj in self.rollout(**kwargs):
traj, found = self.rollout(**kwargs)
for index, traj in enumerate(traj):
self.loss = 0
self.results[traj['instr_id']] = traj['path']
self.results[traj['instr_id']] = (traj['path'], found[index])
else: # Do a full round
while True:
for traj in self.rollout(**kwargs):
traj, found = self.rollout(**kwargs)
for index, traj in enumerate(traj):
if traj['instr_id'] in self.results:
looped = True
else:
self.loss = 0
self.results[traj['instr_id']] = traj['path']
self.results[traj['instr_id']] = (traj['path'], found[index])
if looped:
break
@ -344,8 +346,6 @@ class Seq2SeqAgent(BaseAgent):
# Supervised training
target = self._teacher_action(perm_obs, ended)
for i in perm_obs:
print(i['found'], end=' ')
ml_loss += self.criterion(logit, target)
@ -390,14 +390,21 @@ class Seq2SeqAgent(BaseAgent):
cpu_a_t[i] = -2
print(cpu_a_t)
# Make action and get the new state
self.make_equiv_action(cpu_a_t, perm_obs, perm_idx, traj, found)
print(self.feedback, found)
'''
print(self.feedback, end=' ')
print(cpu_a_t, end=' ')
for i in perm_obs:
print(i['found'], end=' ')
print(found)
print()
'''
obs = np.array(self.env._get_obs())
perm_obs = obs[perm_idx] # Perm the obs for the resu
'''
if train_rl:
# Calculate the mask and reward
dist = np.zeros(batch_size, np.float32)
@ -451,6 +458,7 @@ class Seq2SeqAgent(BaseAgent):
masks.append(mask)
last_dist[:] = dist
last_ndtw[:] = ndtw_score
'''
# Update the finished actions
# -1 means ended or ignored (already ended)
@ -461,7 +469,7 @@ class Seq2SeqAgent(BaseAgent):
if ended.all():
break
'''
if train_rl:
# Last action in A2C
input_a_t, candidate_feat, candidate_leng = self.get_input_feat(perm_obs)
@ -472,7 +480,6 @@ class Seq2SeqAgent(BaseAgent):
visual_attention_mask = torch.cat((language_attention_mask, visual_temp_mask), dim=-1)
self.vln_bert.vln_bert.config.directions = max(candidate_leng)
''' Visual BERT '''
visual_inputs = {'mode': 'visual',
'sentence': language_features,
'attention_mask': visual_attention_mask,
@ -523,6 +530,7 @@ class Seq2SeqAgent(BaseAgent):
self.loss += rl_loss
self.logs['RL_loss'].append(rl_loss.item())
'''
if train_ml is not None:
self.loss += ml_loss * train_ml / batch_size
@ -533,8 +541,7 @@ class Seq2SeqAgent(BaseAgent):
else:
self.losses.append(self.loss.item() / self.episode_len) # This argument is useless.
print('\n')
return traj
return traj, found
def test(self, use_dropout=False, feedback='argmax', allow_cheat=False, iters=None):
''' Evaluate once on each instruction in the current environment '''

View File

@ -55,11 +55,16 @@ class Evaluation(object):
near_d = d
return near_id
def _score_item(self, instr_id, path):
def _score_item(self, instr_id, path, predict_found):
''' Calculate error based on the final position in trajectory, and also
the closest position (oracle stopping rule).
The path contains [view_id, angle, vofv] '''
gt = self.gt[instr_id.split('_')[-2]]
index = int(instr_id.split('_')[-1])
gt_instruction = gt['instructions'][index]
gt_found = gt['found'][index]
start = gt['path'][0]
assert start == path[0][0], 'Result trajectories should include the start position'
goal = gt['path'][-1]
@ -68,6 +73,19 @@ class Evaluation(object):
self.scores['nav_errors'].append(self.distances[gt['scan']][final_position][goal])
self.scores['oracle_errors'].append(self.distances[gt['scan']][nearest_position][goal])
self.scores['trajectory_steps'].append(len(path)-1)
# <STOP> <NOT_FOUND> score
score = 0
if gt_found == True:
if predict_found == -1:
score = 1
else:
if predict_found == -2:
score = 1
self.scores['found_count'] += score
distance = 0 # length of the path in meters
prev = path[0]
for curr in path[1:]:
@ -81,6 +99,7 @@ class Evaluation(object):
def score(self, output_file):
''' Evaluate each agent trajectory based on how close it got to the goal location '''
self.scores = defaultdict(list)
self.scores['found_count'] = 0
instr_ids = set(self.instr_ids)
if type(output_file) is str:
with open(output_file) as f:
@ -90,12 +109,14 @@ class Evaluation(object):
# print('result length', len(results))
# print("RESULT:", results)
path_counter = 0
for item in results:
# Check against expected ids
if item['instr_id'] in instr_ids:
# print("{} exist".format(item['instr_id']))
instr_ids.remove(item['instr_id'])
self._score_item(item['instr_id'], item['trajectory'])
self._score_item(item['instr_id'], item['trajectory'], item['found'])
path_counter += 1
else:
print("{} not exist".format(item['instr_id']))
print(item)
@ -108,7 +129,8 @@ class Evaluation(object):
'nav_error': np.average(self.scores['nav_errors']),
'oracle_error': np.average(self.scores['oracle_errors']),
'steps': np.average(self.scores['trajectory_steps']),
'lengths': np.average(self.scores['trajectory_lengths'])
'lengths': np.average(self.scores['trajectory_lengths']),
'found_score': self.scores['found_count'] / path_counter
}
num_successes = len([i for i in self.scores['nav_errors'] if i < self.error_margin])
score_summary['success_rate'] = float(num_successes)/float(len(self.scores['nav_errors']))

View File

@ -105,6 +105,9 @@ def train(train_env, tok, n_iters, log_every=2000, val_envs={}, aug_env=None):
# Run validation
loss_str = "iter {}".format(iter)
save_results = []
for env_name, (env, evaluator) in val_envs.items():
listner.env = env
@ -112,6 +115,8 @@ def train(train_env, tok, n_iters, log_every=2000, val_envs={}, aug_env=None):
listner.test(use_dropout=False, feedback='argmax', iters=None)
result = listner.get_results()
score_summary, _ = evaluator.score(result)
print(score_summary)
loss_str += ", %s " % env_name
for metric, val in score_summary.items():
if metric in ['spl']:
@ -199,7 +204,7 @@ def train_val(test_only=False):
else:
featurized_scans = set([key.split("_")[0] for key in list(feat_dict.keys())])
# val_env_names = ['val_train_seen', 'val_seen', 'val_unseen']
val_env_names = ['val_unseen']
val_env_names = ['train','val_unseen']
train_env = R2RBatch(feat_dict, batch_size=args.batchSize, splits=['train'], tokenizer=tok)
from collections import OrderedDict