diff --git a/README.md b/README.md index 5eaea71..f8c03fc 100644 --- a/README.md +++ b/README.md @@ -47,8 +47,6 @@ Please refer to [vlnbert_init.py](https://github.com/YicongHong/Recurrent-VLN-BE Please read Peter Anderson's VLN paper for the [R2R Navigation task](https://arxiv.org/abs/1711.07280). -Our code is based on the code structure of the [EnvDrop](https://github.com/airsplay/R2R-EnvDrop). - ### Reproduce Testing Results To replicate the performance reported in our paper, load the trained network weights and run validation: @@ -56,7 +54,7 @@ To replicate the performance reported in our paper, load the trained network wei bash run/test_agent.bash ``` -You can simply switch between the OSCAR-based and the PREVALENT-based VLN models by changing the arguments `vlnmodel` (oscar or prevalent) and `load` (trained model paths). +You can simply switch between the OSCAR-based and the PREVALENT-based VLN models by changing the arguments `vlnbert` (oscar or prevalent) and `load` (trained model paths). ### Training diff --git a/run/test_agent.bash b/run/test_agent.bash index a23fa53..e0e70a0 100644 --- a/run/test_agent.bash +++ b/run/test_agent.bash @@ -1,4 +1,4 @@ -name=VLNBERT-test +name=VLNBERT-test-Prevalent flag="--vlnbert prevalent diff --git a/run/train_agent.bash b/run/train_agent.bash index c782f1d..048777b 100644 --- a/run/train_agent.bash +++ b/run/train_agent.bash @@ -1,4 +1,4 @@ -name=VLNBERT-train +name=VLNBERT-train-Prevalent flag="--vlnbert prevalent