''' Evaluation of agent trajectories ''' import json import os import sys from collections import defaultdict import networkx as nx import numpy as np import pprint pp = pprint.PrettyPrinter(indent=4) from env import R2RBatch from utils import load_datasets, load_nav_graphs, ndtw_graphload, DTW from agent import BaseAgent class Evaluation(object): ''' Results submission format: [{'instr_id': string, 'trajectory':[(viewpoint_id, heading_rads, elevation_rads),] } ] ''' def __init__(self, splits, scans, tok): self.error_margin = 3.0 self.splits = splits self.tok = tok self.gt = {} self.instr_ids = [] self.scans = [] print(splits) for split in splits: for item in load_datasets([split]): if scans is not None and item['scan'] not in scans: print("ignore {}".format(item['scan'])) continue self.gt[str(item['path_id'])] = item self.scans.append(item['scan']) self.instr_ids += ['%s_%d' % (item['path_id'], i) for i in range(len(item['instructions']))] # for i in self.instr_ids: # print(i) self.scans = set(self.scans) self.instr_ids = set(self.instr_ids) self.graphs = load_nav_graphs(self.scans) self.distances = {} for scan,G in self.graphs.items(): # compute all shortest paths self.distances[scan] = dict(nx.all_pairs_dijkstra_path_length(G)) def _get_nearest(self, scan, goal_id, path): near_id = path[0][0] near_d = self.distances[scan][near_id][goal_id] for item in path: d = self.distances[scan][item[0]][goal_id] if d < near_d: near_id = item[0] near_d = d return near_id def _score_item(self, instr_id, path, predict_found): ''' Calculate error based on the final position in trajectory, and also the closest position (oracle stopping rule). The path contains [view_id, angle, vofv] ''' gt = self.gt[instr_id.split('_')[-2]] index = int(instr_id.split('_')[-1]) gt_instruction = gt['instructions'][index] gt_found = gt['found'][index] start = gt['path'][0] assert start == path[0][0], 'Result trajectories should include the start position' goal = gt['path'][-1] final_position = path[-1][0] # the first of [view_id, angle, vofv] nearest_position = self._get_nearest(gt['scan'], goal, path) self.scores['nav_errors'].append(self.distances[gt['scan']][final_position][goal]) self.scores['oracle_errors'].append(self.distances[gt['scan']][nearest_position][goal]) self.scores['trajectory_steps'].append(len(path)-1) # score score = 0 if gt_found == True: if predict_found == -1: score = 1 else: if predict_found == -2: score = 1 self.scores['found_count'] += score distance = 0 # length of the path in meters prev = path[0] for curr in path[1:]: distance += self.distances[gt['scan']][prev[0]][curr[0]] prev = curr self.scores['trajectory_lengths'].append(distance) self.scores['shortest_lengths'].append( self.distances[gt['scan']][start][goal] ) def score(self, output_file): ''' Evaluate each agent trajectory based on how close it got to the goal location ''' self.scores = defaultdict(list) self.scores['found_count'] = 0 instr_ids = set(self.instr_ids) if type(output_file) is str: with open(output_file) as f: results = json.load(f) else: results = output_file # print('result length', len(results)) # print("RESULT:", results) path_counter = 0 for item in results: # Check against expected ids if item['instr_id'] in instr_ids: # print("{} exist".format(item['instr_id'])) instr_ids.remove(item['instr_id']) self._score_item(item['instr_id'], item['trajectory'], item['found']) path_counter += 1 else: print("{} not exist".format(item['instr_id'])) print(item) # if 'train' not in self.splits: # Exclude the training from this. (Because training eval may be partial) # assert len(instr_ids) == 0, 'Missing %d of %d instruction ids from %s - not in %s'\ # % (len(instr_ids), len(self.instr_ids), ",".join(self.splits), output_file) # assert len(self.scores['nav_errors']) == len(self.instr_ids) score_summary = { 'nav_error': np.average(self.scores['nav_errors']), 'oracle_error': np.average(self.scores['oracle_errors']), 'steps': np.average(self.scores['trajectory_steps']), 'lengths': np.average(self.scores['trajectory_lengths']), 'found_score': self.scores['found_count'] / path_counter } num_successes = len([i for i in self.scores['nav_errors'] if i < self.error_margin]) score_summary['success_rate'] = float(num_successes)/float(len(self.scores['nav_errors'])) oracle_successes = len([i for i in self.scores['oracle_errors'] if i < self.error_margin]) score_summary['oracle_rate'] = float(oracle_successes)/float(len(self.scores['oracle_errors'])) spl = [float(error < self.error_margin) * l / max(l, p, 0.01) for error, p, l in zip(self.scores['nav_errors'], self.scores['trajectory_lengths'], self.scores['shortest_lengths']) ] score_summary['spl'] = np.average(spl) return score_summary, self.scores