vlnbert/r2r_src/env.py

386 lines
16 KiB
Python

''' Batched Room-to-Room navigation environment '''
import sys
sys.path.append('buildpy36')
sys.path.append('Matterport_Simulator/build/')
import MatterSim
import csv
import numpy as np
import math
import base64
import utils
import json
import os
import random
import networkx as nx
from param import args
from utils import load_datasets, load_nav_graphs, pad_instr_tokens
from IPython import embed
csv.field_size_limit(sys.maxsize)
class EnvBatch():
''' A simple wrapper for a batch of MatterSim environments,
using discretized viewpoints and pretrained features '''
def __init__(self, feature_store=None, batch_size=100):
"""
1. Load pretrained image feature
2. Init the Simulator.
:param feature_store: The name of file stored the feature.
:param batch_size: Used to create the simulator list.
"""
if feature_store:
if type(feature_store) is dict: # A silly way to avoid multiple reading
self.features = feature_store
self.image_w = 640
self.image_h = 480
self.vfov = 60
self.feature_size = next(iter(self.features.values())).shape[-1]
print('The feature size is %d' % self.feature_size)
else:
print(' Image features not provided - in testing mode')
self.features = None
self.image_w = 640
self.image_h = 480
self.vfov = 60
self.sims = []
for i in range(batch_size):
sim = MatterSim.Simulator()
sim.setRenderingEnabled(False)
sim.setDiscretizedViewingAngles(True) # Set increment/decrement to 30 degree. (otherwise by radians)
sim.setCameraResolution(self.image_w, self.image_h)
sim.setCameraVFOV(math.radians(self.vfov))
sim.initialize()
self.sims.append(sim)
def _make_id(self, scanId, viewpointId):
return scanId + '_' + viewpointId
def newEpisodes(self, scanIds, viewpointIds, headings):
for i, (scanId, viewpointId, heading) in enumerate(zip(scanIds, viewpointIds, headings)):
self.sims[i].newEpisode([scanId], [viewpointId], [heading], [0])
def getStates(self):
"""
Get list of states augmented with precomputed image features. rgb field will be empty.
Agent's current view [0-35] (set only when viewing angles are discretized)
[0-11] looking down, [12-23] looking at horizon, [24-35] looking up
:return: [ ((30, 2048), sim_state) ] * batch_size
"""
feature_states = []
for i, sim in enumerate(self.sims):
state = sim.getState()[0]
long_id = self._make_id(state.scanId, state.location.viewpointId)
if self.features:
feature = self.features[long_id]
feature_states.append((feature, state))
else:
feature_states.append((None, state))
return feature_states
def makeActions(self, actions):
''' Take an action using the full state dependent action interface (with batched input).
Every action element should be an (index, heading, elevation) tuple. '''
for i, (index, heading, elevation) in enumerate(actions):
self.sims[i].makeAction(index, heading, elevation)
class R2RBatch():
''' Implements the Room to Room navigation task, using discretized viewpoints and pretrained features '''
def __init__(self, feature_store, batch_size=100, seed=10, splits=['train'], tokenizer=None,
name=None):
self.env = EnvBatch(feature_store=feature_store, batch_size=batch_size)
if feature_store:
self.feature_size = self.env.feature_size
else:
self.feature_size = 2048
self.data = []
if tokenizer:
self.tok = tokenizer
scans = []
for split in splits:
max_len = 0
for i_item, item in enumerate(load_datasets([split])):
max_len = i_item
# if args.test_only and i_item == 64:
# break
if "/" in split:
try:
new_item = dict(item)
new_item['instr_id'] = item['path_id']
new_item['instructions'] = item['instructions'][0]
new_item['instr_encoding'] = item['instr_enc']
if new_item['instr_encoding'] is not None: # Filter the wrong data
self.data.append(new_item)
scans.append(item['scan'])
except:
continue
else:
# Split multiple instructions into separate entries
# print("HERE")
for j, instr in enumerate(item['instructions']):
try:
new_item = dict(item)
new_item['instr_id'] = '%s_%d' % (item['path_id'], j)
new_item['instructions'] = instr
''' BERT tokenizer '''
instr_tokens = tokenizer.tokenize(instr)
padded_instr_tokens, num_words = pad_instr_tokens(instr_tokens, args.maxInput)
new_item['instr_encoding'] = tokenizer.convert_tokens_to_ids(padded_instr_tokens)
if new_item['instr_encoding'] is not None: # Filter the wrong data
self.data.append(new_item)
scans.append(item['scan'])
except:
continue
print("split {} has {} datas in the file.".format(split, max_len))
if name is None:
self.name = splits[0] if len(splits) > 0 else "FAKE"
else:
self.name = name
self.scans = set(scans)
self.splits = splits
self.seed = seed
random.seed(self.seed)
random.shuffle(self.data)
self.ix = 0
self.batch_size = batch_size
self._load_nav_graphs()
self.angle_feature = utils.get_all_point_angle_feature()
self.sim = utils.new_simulator()
self.buffered_state_dict = {}
# It means that the fake data is equals to data in the supervised setup
self.fake_data = self.data
print('R2RBatch loaded with %d instructions, using splits: %s' % (len(self.data), ",".join(splits)))
def size(self):
return len(self.data)
def _load_nav_graphs(self):
"""
load graph from self.scan,
Store the graph {scan_id: graph} in self.graphs
Store the shortest path {scan_id: {view_id_x: {view_id_y: [path]} } } in self.paths
Store the distances in self.distances. (Structure see above)
Load connectivity graph for each scan, useful for reasoning about shortest paths
:return: None
"""
print('Loading navigation graphs for %d scans' % len(self.scans))
self.graphs = load_nav_graphs(self.scans)
self.paths = {}
for scan, G in self.graphs.items(): # compute all shortest paths
self.paths[scan] = dict(nx.all_pairs_dijkstra_path(G))
self.distances = {}
for scan, G in self.graphs.items(): # compute all shortest paths
self.distances[scan] = dict(nx.all_pairs_dijkstra_path_length(G))
def _next_minibatch(self, tile_one=False, batch_size=None, **kwargs):
"""
Store the minibach in 'self.batch'
:param tile_one: Tile the one into batch_size
:return: None
"""
if batch_size is None:
batch_size = self.batch_size
if tile_one:
batch = [self.data[self.ix]] * batch_size
self.ix += 1
if self.ix >= len(self.data):
random.shuffle(self.data)
self.ix -= len(self.data)
else:
batch = self.data[self.ix: self.ix+batch_size]
if len(batch) < batch_size:
random.shuffle(self.data)
self.ix = batch_size - len(batch)
batch += self.data[:self.ix]
else:
self.ix += batch_size
self.batch = batch
def reset_epoch(self, shuffle=False):
''' Reset the data index to beginning of epoch. Primarily for testing.
You must still call reset() for a new episode. '''
if shuffle:
random.shuffle(self.data)
self.ix = 0
def _shortest_path_action(self, state, goalViewpointId):
''' Determine next action on the shortest path to goal, for supervised training. '''
if state.location.viewpointId == goalViewpointId:
return goalViewpointId # Just stop here
path = self.paths[state.scanId][state.location.viewpointId][goalViewpointId]
nextViewpointId = path[1]
return nextViewpointId
def make_candidate(self, feature, scanId, viewpointId, viewId):
def _loc_distance(loc):
return np.sqrt(loc.rel_heading ** 2 + loc.rel_elevation ** 2)
# viewId 就是 view index
base_heading = (viewId % 12) * math.radians(30)
adj_dict = {}
long_id = "%s_%s" % (scanId, viewpointId)
if long_id not in self.buffered_state_dict:
# 36 view index
for ix in range(36):
if ix == 0:
self.sim.newEpisode([scanId], [viewpointId], [0], [math.radians(-30)])
elif ix % 12 == 0:
self.sim.makeAction([0], [1.0], [1.0])
else:
self.sim.makeAction([0], [1.0], [0])
state = self.sim.getState()[0]
assert state.viewIndex == ix
# Heading and elevation for the viewpoint center
heading = state.heading - base_heading
elevation = state.elevation
# feature 是 np.zeros((36, 2048))
visual_feat = feature[ix]
# (2048)
# get adjacent locations
for j, loc in enumerate(state.navigableLocations[1:]):
# if a loc is visible from multiple view, use the closest
# view (in angular distance) as its representation
distance = _loc_distance(loc)
# Heading and elevation for for the loc
loc_heading = heading + loc.rel_heading
loc_elevation = elevation + loc.rel_elevation
angle_feat = utils.angle_feature(loc_heading, loc_elevation)
if (loc.viewpointId not in adj_dict or
distance < adj_dict[loc.viewpointId]['distance']):
adj_dict[loc.viewpointId] = {
'heading': loc_heading,
'elevation': loc_elevation,
"normalized_heading": state.heading + loc.rel_heading,
'scanId':scanId,
'viewpointId': loc.viewpointId, # Next viewpoint id
'pointId': ix,
'distance': distance,
'idx': j + 1,
'feature': np.concatenate((visual_feat, angle_feat), -1)
}
candidate = list(adj_dict.values())
# 放 buffer
self.buffered_state_dict[long_id] = [
{key: c[key]
for key in
['normalized_heading', 'elevation', 'scanId', 'viewpointId',
'pointId', 'idx']}
for c in candidate
]
return candidate
else:
candidate = self.buffered_state_dict[long_id]
candidate_new = []
for c in candidate:
c_new = c.copy()
ix = c_new['pointId']
normalized_heading = c_new['normalized_heading']
visual_feat = feature[ix]
loc_heading = normalized_heading - base_heading
c_new['heading'] = loc_heading
angle_feat = utils.angle_feature(c_new['heading'], c_new['elevation'])
c_new['feature'] = np.concatenate((visual_feat, angle_feat), -1)
c_new.pop('normalized_heading')
candidate_new.append(c_new)
return candidate_new
def _get_obs(self):
obs = []
# self.env is `EnvBatch`
# [ ((30, 2048), sim_state) ] * batch_size
for i, (feature, state) in enumerate(self.env.getStates()):
# self.batch 看不懂
item = self.batch[i]
# now viewpoint index
base_view_id = state.viewIndex
if feature is None:
feature = np.zeros((36, 2048))
# Full features
# candidate 就是 navigable viewpoint
candidate = self.make_candidate(feature, state.scanId, state.location.viewpointId, state.viewIndex)
# [visual_feature, angle_feature] for views
feature = np.concatenate((feature, self.angle_feature[base_view_id]), -1)
obs.append({
'instr_id' : item['instr_id'],
'scan' : state.scanId,
'viewpoint' : state.location.viewpointId,
'viewIndex' : state.viewIndex,
'heading' : state.heading,
'elevation' : state.elevation,
'feature' : feature,
'candidate': candidate,
'navigableLocations' : state.navigableLocations,
'instructions' : item['instructions'],
'teacher' : self._shortest_path_action(state, item['path'][-1]),
'gt_path' : item['path'],
'path_id' : item['path_id']
})
if 'instr_encoding' in item:
obs[-1]['instr_encoding'] = item['instr_encoding']
# A2C reward. The negative distance between the state and the final state
obs[-1]['distance'] = self.distances[state.scanId][state.location.viewpointId][item['path'][-1]]
return obs
def reset(self, batch=None, inject=False, **kwargs):
''' Load a new minibatch / episodes. '''
if batch is None: # Allow the user to explicitly define the batch
self._next_minibatch(**kwargs)
else:
if inject: # Inject the batch into the next minibatch
self._next_minibatch(**kwargs)
self.batch[:len(batch)] = batch
else: # Else set the batch to the current batch
self.batch = batch
scanIds = [item['scan'] for item in self.batch]
viewpointIds = [item['path'][0] for item in self.batch]
headings = [item['heading'] for item in self.batch]
# self.env is `EnvBatch`
self.env.newEpisodes(scanIds, viewpointIds, headings)
return self._get_obs()
def step(self, actions):
''' Take action (same interface as makeActions) '''
self.env.makeActions(actions)
return self._get_obs()
def get_statistics(self):
stats = {}
length = 0
path = 0
for datum in self.data:
length += len(self.tok.split_sentence(datum['instructions']))
path += self.distances[datum['scan']][datum['path'][0]][datum['path'][-1]]
stats['length'] = length / len(self.data)
stats['path'] = path / len(self.data)
return stats