Compare commits
2 Commits
de44cad219
...
fc01163995
| Author | SHA1 | Date | |
|---|---|---|---|
| fc01163995 | |||
| bf905e9e03 |
37
train/dataset.py
Normal file
37
train/dataset.py
Normal file
@ -0,0 +1,37 @@
|
|||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
|
from torch.utils.data import Dataset, DataLoader
|
||||||
|
|
||||||
|
class Cifar10Dataset(Dataset):
|
||||||
|
def __init__(self, data_dir):
|
||||||
|
self.imgs = []
|
||||||
|
self.labels = []
|
||||||
|
for file in os.listdir(data_dir):
|
||||||
|
if 'data_batch' in file:
|
||||||
|
batch = self.unpickle(f'{data_dir}/{file}')
|
||||||
|
|
||||||
|
length = len(batch[b'data'])
|
||||||
|
self.labels += batch[b'labels']
|
||||||
|
|
||||||
|
# read image data
|
||||||
|
values = np.array(batch[b'data']) / 255.0
|
||||||
|
imgs = np.zeros((length, 3, 32, 32))
|
||||||
|
for index in range(length):
|
||||||
|
for channel in range(3):
|
||||||
|
imgs[index][channel] = values[index][32*32*channel : 32*32*(channel+1)].reshape((32, 32))
|
||||||
|
self.imgs.append(imgs)
|
||||||
|
self.imgs = np.concatenate(self.imgs)
|
||||||
|
print(f"load images : {self.imgs.shape}")
|
||||||
|
print(f"load labels : {len(self.labels)}")
|
||||||
|
|
||||||
|
def unpickle(self, file):
|
||||||
|
import pickle
|
||||||
|
with open(file, 'rb') as fo:
|
||||||
|
dict = pickle.load(fo, encoding='bytes')
|
||||||
|
return dict
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
return self.imgs[index], self.labels[index]
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.imgs)
|
||||||
34
train/model.py
Normal file
34
train/model.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
from torch import nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
class Network(nn.Module):
|
||||||
|
def __init__(self):
|
||||||
|
super().__init__()
|
||||||
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
||||||
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding='same')
|
||||||
|
self.conv2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding='same')
|
||||||
|
self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding='same')
|
||||||
|
self.conv4 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding='same')
|
||||||
|
self.fc1 = nn.Linear(2048, 1024)
|
||||||
|
self.fc2 = nn.Linear(1024, 128)
|
||||||
|
self.fc3 = nn.Linear(128, 10)
|
||||||
|
self.relu = nn.ReLU()
|
||||||
|
self.dropout = nn.Dropout(0.3)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = self.relu(self.conv1(x))
|
||||||
|
x = self.relu(self.conv2(x))
|
||||||
|
x = self.pool(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
x = self.relu(self.conv3(x))
|
||||||
|
x = self.relu(self.conv4(x))
|
||||||
|
x = self.pool(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
x = x.reshape((x.shape[0], -1))
|
||||||
|
x = self.relu(self.fc1(x))
|
||||||
|
x = self.dropout(x)
|
||||||
|
x = self.relu(self.fc2(x))
|
||||||
|
x = self.dropout(x)
|
||||||
|
x = self.fc3(x)
|
||||||
|
return x
|
||||||
|
|
||||||
39
train/train.py
Normal file
39
train/train.py
Normal file
@ -0,0 +1,39 @@
|
|||||||
|
import torch
|
||||||
|
from torch import optim
|
||||||
|
from torch import nn
|
||||||
|
from dataset import Cifar10Dataset
|
||||||
|
from model import Network
|
||||||
|
from torch.utils.data import DataLoader
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||||
|
|
||||||
|
model = Network().to(device)
|
||||||
|
dataset = Cifar10Dataset('./dataset_dir/cifar-10-batches-py')
|
||||||
|
loader = DataLoader(dataset, batch_size=32, shuffle=True)
|
||||||
|
|
||||||
|
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
|
||||||
|
for epoch in range(50):
|
||||||
|
model.train()
|
||||||
|
train_loss_sum = 0
|
||||||
|
train_correct_sum = 0
|
||||||
|
for x, y in loader:
|
||||||
|
x = x.float()
|
||||||
|
x, y = x.to(device), y.to(device)
|
||||||
|
|
||||||
|
predict = model(x)
|
||||||
|
loss = criterion(predict, y)
|
||||||
|
loss.backward()
|
||||||
|
|
||||||
|
# evaluate
|
||||||
|
train_loss_sum += loss.item()
|
||||||
|
predicted_classes = torch.argmax(predict, dim=1)
|
||||||
|
train_correct_sum += (predicted_classes == y).sum()
|
||||||
|
|
||||||
|
optimizer.step()
|
||||||
|
optimizer.zero_grad()
|
||||||
|
print(train_loss_sum / len(loader))
|
||||||
|
print((train_correct_sum / len(dataset)).item(),'%')
|
||||||
|
print()
|
||||||
Loading…
Reference in New Issue
Block a user