40 lines
1.3 KiB
Python
40 lines
1.3 KiB
Python
'''
|
|
|
|
Please Implement your model here.
|
|
|
|
'''
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
|
|
class Network(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
|
|
self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, stride=1, padding='same')
|
|
self.conv2 = nn.Conv2d(in_channels=16, out_channels=16, kernel_size=3, stride=1, padding='same')
|
|
self.conv3 = nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=1, padding='same')
|
|
self.conv4 = nn.Conv2d(in_channels=32, out_channels=32, kernel_size=3, stride=1, padding='same')
|
|
self.fc1 = nn.Linear(2048, 1024)
|
|
self.fc2 = nn.Linear(1024, 128)
|
|
self.fc3 = nn.Linear(128, 10)
|
|
self.relu = nn.ReLU()
|
|
self.dropout = nn.Dropout(0.3)
|
|
|
|
def forward(self, x):
|
|
x = self.relu(self.conv1(x))
|
|
x = self.relu(self.conv2(x))
|
|
x = self.pool(x)
|
|
x = self.dropout(x)
|
|
x = self.relu(self.conv3(x))
|
|
x = self.relu(self.conv4(x))
|
|
x = self.pool(x)
|
|
x = self.dropout(x)
|
|
x = x.reshape((x.shape[0], -1))
|
|
x = self.relu(self.fc1(x))
|
|
x = self.dropout(x)
|
|
x = self.relu(self.fc2(x))
|
|
x = self.dropout(x)
|
|
x = self.fc3(x)
|
|
return x
|
|
|