fix: plot unsorted data & mistake 0/1 error
This commit is contained in:
parent
b3ddd2d11e
commit
0c07cd70e1
@ -22,7 +22,7 @@ def generate_data(N):
|
||||
return x, y
|
||||
|
||||
def average_square_error(y, y_hat):
|
||||
error = (y==y_hat)
|
||||
error = (y!=y_hat)
|
||||
return error.sum()/error.shape[0]
|
||||
|
||||
if __name__ == '__main__':
|
||||
@ -42,10 +42,12 @@ if __name__ == '__main__':
|
||||
errors.append(error)
|
||||
print(times, error)
|
||||
|
||||
errors = sorted(errors)
|
||||
median = ( errors[63] + errors[64] ) / 2
|
||||
sorted_errors = sorted(errors)
|
||||
median = ( sorted_errors[63] + sorted_errors[64] ) / 2
|
||||
|
||||
plt.hist(errors, bins=10)
|
||||
plt.xlabel("Ein")
|
||||
plt.title("median: {}".format(median))
|
||||
plt.savefig("10.png")
|
||||
plt.savefig("10.png")
|
||||
|
||||
|
||||
|
||||
@ -77,13 +77,13 @@ if __name__ == '__main__':
|
||||
print()
|
||||
|
||||
|
||||
linear_regression_errors = sorted(linear_regression_errors)
|
||||
logistic_regression_errors = sorted(logistic_regression_errors)
|
||||
linear_regression_median = linear_regression_errors[63] + linear_regression_errors[64]
|
||||
logistic_regression_median = logistic_regression_errors[63] + logistic_regression_errors[64]
|
||||
sorted_linear_regression_errors = sorted(linear_regression_errors)
|
||||
sorted_logistic_regression_errors = sorted(logistic_regression_errors)
|
||||
linear_regression_median = sorted_linear_regression_errors[63] + sorted_linear_regression_errors[64]
|
||||
logistic_regression_median = sorted_logistic_regression_errors[63] + sorted_logistic_regression_errors[64]
|
||||
|
||||
plt.scatter(linear_regression_errors, logistic_regression_errors)
|
||||
plt.xlabel("linear regression error")
|
||||
plt.xlabel("logistic regression error")
|
||||
plt.title("linear regression: {}\nlogistic regression: {}".format(linear_regression_median, logistic_regression_median))
|
||||
plt.savefig("11.png")
|
||||
plt.savefig("11.png")
|
||||
|
||||
@ -90,14 +90,13 @@ if __name__ == '__main__':
|
||||
print(times, error)
|
||||
print()
|
||||
|
||||
|
||||
linear_regression_errors = sorted(linear_regression_errors)
|
||||
logistic_regression_errors = sorted(logistic_regression_errors)
|
||||
linear_regression_median = linear_regression_errors[63] + linear_regression_errors[64]
|
||||
logistic_regression_median = logistic_regression_errors[63] + logistic_regression_errors[64]
|
||||
sorted_linear_regression_errors = sorted(linear_regression_errors)
|
||||
sorted_logistic_regression_errors = sorted(logistic_regression_errors)
|
||||
linear_regression_median = sorted_linear_regression_errors[63] + sorted_linear_regression_errors[64]
|
||||
logistic_regression_median = sorted_logistic_regression_errors[63] + sorted_logistic_regression_errors[64]
|
||||
|
||||
plt.scatter(linear_regression_errors, logistic_regression_errors)
|
||||
plt.xlabel("linear regression error")
|
||||
plt.xlabel("logistic regression error")
|
||||
plt.title("linear regression: {}\nlogistic regression: {}".format(linear_regression_median, logistic_regression_median))
|
||||
plt.savefig("12.png")
|
||||
plt.savefig("12.png")
|
||||
|
||||
@ -2,7 +2,6 @@ import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import time
|
||||
|
||||
|
||||
def generate_data(N):
|
||||
y = np.random.choice([1, -1], N)
|
||||
|
||||
@ -42,10 +41,10 @@ if __name__ == '__main__':
|
||||
errors.append(error)
|
||||
print(times, error)
|
||||
|
||||
errors = sorted(errors)
|
||||
median = ( errors[63] + errors[64] ) / 2
|
||||
sorted_errors = sorted(errors)
|
||||
median = ( sorted_errors[63] + sorted_errors[64] ) / 2
|
||||
|
||||
plt.hist(errors, bins=10)
|
||||
plt.xlabel("Ein")
|
||||
plt.title("median: {}".format(median))
|
||||
plt.savefig("9.png")
|
||||
plt.savefig("9.png")
|
||||
|
||||
Loading…
Reference in New Issue
Block a user