67 lines
1.3 KiB
Bash
67 lines
1.3 KiB
Bash
DATA_ROOT=../datasets
|
|
|
|
train_alg=dagger
|
|
|
|
features=vitbase
|
|
ft_dim=768
|
|
obj_features=vitbase
|
|
obj_ft_dim=768
|
|
|
|
ngpus=1
|
|
seed=0
|
|
|
|
name=${train_alg}-${features}
|
|
name=${name}-seed.${seed}
|
|
name=${name}-init.aug.45k
|
|
|
|
outdir=${DATA_ROOT}/R2R/exprs_map/finetune/${name}
|
|
|
|
flag="--root_dir ${DATA_ROOT}
|
|
--dataset r2r
|
|
--output_dir ${outdir}
|
|
--world_size ${ngpus}
|
|
--seed ${seed}
|
|
--tokenizer bert
|
|
|
|
--enc_full_graph
|
|
--graph_sprels
|
|
--fusion dynamic
|
|
|
|
--expert_policy spl
|
|
--train_alg ${train_alg}
|
|
|
|
--num_l_layers 9
|
|
--num_x_layers 4
|
|
--num_pano_layers 2
|
|
|
|
--max_action_len 15
|
|
--max_instr_len 200
|
|
|
|
--batch_size 8
|
|
--lr 1e-5
|
|
--iters 200000
|
|
--log_every 1000
|
|
--optim adamW
|
|
|
|
--features ${features}
|
|
--image_feat_size ${ft_dim}
|
|
--angle_feat_size 4
|
|
|
|
--ml_weight 0.2
|
|
|
|
--feat_dropout 0.4
|
|
--dropout 0.5
|
|
|
|
--gamma 0."
|
|
|
|
# train
|
|
CUDA_VISIBLE_DEVICES='0' python r2r/main_nav.py $flag \
|
|
--tokenizer bert \
|
|
--bert_ckpt_file 'put the pretrained model (see pretrain_src) here' \
|
|
--eval_first
|
|
|
|
# test
|
|
CUDA_VISIBLE_DEVICES='0' python r2r/main_nav.py $flag \
|
|
--tokenizer bert \
|
|
--resume_file ../datasets/R2R/trained_models/best_val_unseen \
|
|
--test --submit |